Properties

Label 2-75-25.17-c2-0-8
Degree $2$
Conductor $75$
Sign $-0.336 + 0.941i$
Analytic cond. $2.04360$
Root an. cond. $1.42954$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.03 − 2.03i)2-s + (0.270 − 1.71i)3-s + (−0.718 − 0.989i)4-s + (−3.06 − 3.94i)5-s + (−3.20 − 2.32i)6-s + (0.410 + 0.410i)7-s + (6.26 − 0.992i)8-s + (−2.85 − 0.927i)9-s + (−11.2 + 2.15i)10-s + (0.00192 + 0.00591i)11-s + (−1.88 + 0.961i)12-s + (9.19 + 18.0i)13-s + (1.26 − 0.410i)14-s + (−7.58 + 4.18i)15-s + (5.99 − 18.4i)16-s + (−1.16 − 7.37i)17-s + ⋯
L(s)  = 1  + (0.518 − 1.01i)2-s + (0.0903 − 0.570i)3-s + (−0.179 − 0.247i)4-s + (−0.613 − 0.789i)5-s + (−0.533 − 0.387i)6-s + (0.0586 + 0.0586i)7-s + (0.783 − 0.124i)8-s + (−0.317 − 0.103i)9-s + (−1.12 + 0.215i)10-s + (0.000174 + 0.000537i)11-s + (−0.157 + 0.0801i)12-s + (0.707 + 1.38i)13-s + (0.0901 − 0.0292i)14-s + (−0.505 + 0.278i)15-s + (0.374 − 1.15i)16-s + (−0.0687 − 0.433i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.336 + 0.941i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.336 + 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $-0.336 + 0.941i$
Analytic conductor: \(2.04360\)
Root analytic conductor: \(1.42954\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :1),\ -0.336 + 0.941i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.930705 - 1.32078i\)
\(L(\frac12)\) \(\approx\) \(0.930705 - 1.32078i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.270 + 1.71i)T \)
5 \( 1 + (3.06 + 3.94i)T \)
good2 \( 1 + (-1.03 + 2.03i)T + (-2.35 - 3.23i)T^{2} \)
7 \( 1 + (-0.410 - 0.410i)T + 49iT^{2} \)
11 \( 1 + (-0.00192 - 0.00591i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (-9.19 - 18.0i)T + (-99.3 + 136. i)T^{2} \)
17 \( 1 + (1.16 + 7.37i)T + (-274. + 89.3i)T^{2} \)
19 \( 1 + (3.79 - 5.21i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (-35.1 - 17.8i)T + (310. + 427. i)T^{2} \)
29 \( 1 + (5.20 + 7.16i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (22.1 + 16.0i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (-2.08 + 1.06i)T + (804. - 1.10e3i)T^{2} \)
41 \( 1 + (14.5 - 44.8i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (39.9 - 39.9i)T - 1.84e3iT^{2} \)
47 \( 1 + (91.4 + 14.4i)T + (2.10e3 + 682. i)T^{2} \)
53 \( 1 + (-12.8 + 81.2i)T + (-2.67e3 - 868. i)T^{2} \)
59 \( 1 + (48.4 + 15.7i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (-8.83 - 27.1i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (-4.58 - 28.9i)T + (-4.26e3 + 1.38e3i)T^{2} \)
71 \( 1 + (38.0 - 27.6i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (-94.5 - 48.1i)T + (3.13e3 + 4.31e3i)T^{2} \)
79 \( 1 + (-2.24 - 3.09i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (26.0 - 4.11i)T + (6.55e3 - 2.12e3i)T^{2} \)
89 \( 1 + (-26.2 + 8.53i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (-185. - 29.3i)T + (8.94e3 + 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.38078673160469411683218695299, −12.94678264508324057741996800654, −11.53465309021795926365812446972, −11.44856139654401983630618936228, −9.488796789143274526387681252811, −8.229635828614447010235950334316, −6.92199677019748981909425089199, −4.89341158888074037556160412762, −3.54352851994312700990878068330, −1.58139787853591598938322299429, 3.39941473465543599056482510342, 4.93296584486699604716000675482, 6.26990264200112289218151379185, 7.44937405470030162875763415941, 8.576832337087067575988810028659, 10.51901024529652043712534777769, 10.96280558506873066784024831491, 12.75634822555072965340087777991, 13.93903188261504981255833701059, 15.05546749872370842575769325363

Graph of the $Z$-function along the critical line