Properties

Label 2-75-25.17-c2-0-2
Degree $2$
Conductor $75$
Sign $0.434 - 0.900i$
Analytic cond. $2.04360$
Root an. cond. $1.42954$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.07 + 2.10i)2-s + (0.270 − 1.71i)3-s + (−0.933 − 1.28i)4-s + (4.10 − 2.85i)5-s + (3.31 + 2.40i)6-s + (9.10 + 9.10i)7-s + (−5.63 + 0.891i)8-s + (−2.85 − 0.927i)9-s + (1.61 + 11.7i)10-s + (−0.412 − 1.26i)11-s + (−2.45 + 1.24i)12-s + (2.93 + 5.75i)13-s + (−28.9 + 9.40i)14-s + (−3.77 − 7.79i)15-s + (6.12 − 18.8i)16-s + (0.410 + 2.59i)17-s + ⋯
L(s)  = 1  + (−0.536 + 1.05i)2-s + (0.0903 − 0.570i)3-s + (−0.233 − 0.321i)4-s + (0.820 − 0.571i)5-s + (0.552 + 0.401i)6-s + (1.30 + 1.30i)7-s + (−0.703 + 0.111i)8-s + (−0.317 − 0.103i)9-s + (0.161 + 1.17i)10-s + (−0.0374 − 0.115i)11-s + (−0.204 + 0.104i)12-s + (0.225 + 0.442i)13-s + (−2.06 + 0.671i)14-s + (−0.251 − 0.519i)15-s + (0.382 − 1.17i)16-s + (0.0241 + 0.152i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.434 - 0.900i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.434 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $0.434 - 0.900i$
Analytic conductor: \(2.04360\)
Root analytic conductor: \(1.42954\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :1),\ 0.434 - 0.900i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.01009 + 0.634363i\)
\(L(\frac12)\) \(\approx\) \(1.01009 + 0.634363i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.270 + 1.71i)T \)
5 \( 1 + (-4.10 + 2.85i)T \)
good2 \( 1 + (1.07 - 2.10i)T + (-2.35 - 3.23i)T^{2} \)
7 \( 1 + (-9.10 - 9.10i)T + 49iT^{2} \)
11 \( 1 + (0.412 + 1.26i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (-2.93 - 5.75i)T + (-99.3 + 136. i)T^{2} \)
17 \( 1 + (-0.410 - 2.59i)T + (-274. + 89.3i)T^{2} \)
19 \( 1 + (-3.46 + 4.77i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (-6.24 - 3.17i)T + (310. + 427. i)T^{2} \)
29 \( 1 + (33.9 + 46.6i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (29.8 + 21.6i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (47.6 - 24.2i)T + (804. - 1.10e3i)T^{2} \)
41 \( 1 + (4.11 - 12.6i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (-40.0 + 40.0i)T - 1.84e3iT^{2} \)
47 \( 1 + (48.6 + 7.70i)T + (2.10e3 + 682. i)T^{2} \)
53 \( 1 + (8.18 - 51.6i)T + (-2.67e3 - 868. i)T^{2} \)
59 \( 1 + (-61.4 - 19.9i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (4.60 + 14.1i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (13.8 + 87.6i)T + (-4.26e3 + 1.38e3i)T^{2} \)
71 \( 1 + (-12.8 + 9.30i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (96.0 + 48.9i)T + (3.13e3 + 4.31e3i)T^{2} \)
79 \( 1 + (-62.5 - 86.0i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (-102. + 16.2i)T + (6.55e3 - 2.12e3i)T^{2} \)
89 \( 1 + (83.2 - 27.0i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (41.9 + 6.65i)T + (8.94e3 + 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.71469231932309597634666048232, −13.62200223280849674129319473310, −12.30270861691605779301879462607, −11.40564796516036760466436499585, −9.318642234265125000178963678447, −8.632459869341511192201391067845, −7.67818570592782908614998275516, −6.13901944031576724683971658193, −5.28502169111531094893300874095, −2.07118130643992400731884144346, 1.62843724016173936331091177775, 3.49236818600879459957363477158, 5.32492401035152684236306457821, 7.20063583669723800552838542368, 8.783902803947834241748881916673, 10.01165770875007360717696638571, 10.75293343365379461865675665933, 11.24779816715497087280562494068, 12.92736837712838386057154904225, 14.27659727920941351268676649174

Graph of the $Z$-function along the critical line