Properties

Label 2-75-25.16-c1-0-1
Degree $2$
Conductor $75$
Sign $0.728 + 0.684i$
Analytic cond. $0.598878$
Root an. cond. $0.773872$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)3-s + (−0.309 − 0.951i)4-s + (0.690 − 2.12i)5-s + (0.309 − 0.951i)6-s + 4.47·7-s + (−0.927 + 2.85i)8-s + (−0.809 + 0.587i)9-s + (−1.80 + 1.31i)10-s + (−2.61 − 1.90i)11-s + (0.809 − 0.587i)12-s + (−2.73 + 1.98i)13-s + (−3.61 − 2.62i)14-s + 2.23·15-s + (0.809 − 0.587i)16-s + (−0.881 + 2.71i)17-s + ⋯
L(s)  = 1  + (−0.572 − 0.415i)2-s + (0.178 + 0.549i)3-s + (−0.154 − 0.475i)4-s + (0.309 − 0.951i)5-s + (0.126 − 0.388i)6-s + 1.69·7-s + (−0.327 + 1.00i)8-s + (−0.269 + 0.195i)9-s + (−0.572 + 0.415i)10-s + (−0.789 − 0.573i)11-s + (0.233 − 0.169i)12-s + (−0.758 + 0.551i)13-s + (−0.966 − 0.702i)14-s + 0.577·15-s + (0.202 − 0.146i)16-s + (−0.213 + 0.658i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.728 + 0.684i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.728 + 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $0.728 + 0.684i$
Analytic conductor: \(0.598878\)
Root analytic conductor: \(0.773872\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :1/2),\ 0.728 + 0.684i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.738867 - 0.292538i\)
\(L(\frac12)\) \(\approx\) \(0.738867 - 0.292538i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.309 - 0.951i)T \)
5 \( 1 + (-0.690 + 2.12i)T \)
good2 \( 1 + (0.809 + 0.587i)T + (0.618 + 1.90i)T^{2} \)
7 \( 1 - 4.47T + 7T^{2} \)
11 \( 1 + (2.61 + 1.90i)T + (3.39 + 10.4i)T^{2} \)
13 \( 1 + (2.73 - 1.98i)T + (4.01 - 12.3i)T^{2} \)
17 \( 1 + (0.881 - 2.71i)T + (-13.7 - 9.99i)T^{2} \)
19 \( 1 + (1 - 3.07i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (-3.61 - 2.62i)T + (7.10 + 21.8i)T^{2} \)
29 \( 1 + (-1.35 - 4.16i)T + (-23.4 + 17.0i)T^{2} \)
31 \( 1 + (-2.23 + 6.88i)T + (-25.0 - 18.2i)T^{2} \)
37 \( 1 + (6.54 - 4.75i)T + (11.4 - 35.1i)T^{2} \)
41 \( 1 + (-1.11 + 0.812i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 + 5.70T + 43T^{2} \)
47 \( 1 + (1.61 + 4.97i)T + (-38.0 + 27.6i)T^{2} \)
53 \( 1 + (-0.427 - 1.31i)T + (-42.8 + 31.1i)T^{2} \)
59 \( 1 + (-3.23 + 2.35i)T + (18.2 - 56.1i)T^{2} \)
61 \( 1 + (-0.5 - 0.363i)T + (18.8 + 58.0i)T^{2} \)
67 \( 1 + (-1.61 + 4.97i)T + (-54.2 - 39.3i)T^{2} \)
71 \( 1 + (0.236 + 0.726i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (2.5 + 1.81i)T + (22.5 + 69.4i)T^{2} \)
79 \( 1 + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (-1.09 + 3.35i)T + (-67.1 - 48.7i)T^{2} \)
89 \( 1 + (6.16 + 4.47i)T + (27.5 + 84.6i)T^{2} \)
97 \( 1 + (-2.73 - 8.42i)T + (-78.4 + 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.48269307418845588723424258529, −13.52510005910802409787809844874, −11.89044450322072216954771791340, −10.92882001834541987631384103838, −9.956435109683677422448013163879, −8.747487449512283935268750637188, −8.105639590580036310472066482838, −5.47576575030228824590906326445, −4.70036665276223795549786942922, −1.81840793571778125165229576876, 2.59762376004923137830598093600, 4.94157221680400257439315161765, 6.96459900789652105320208896956, 7.64740172922137002343071574524, 8.656260700052902557464099234712, 10.16111542054083921994065270493, 11.34542925508599531248887456893, 12.54363393248304636635882869051, 13.73578270710135781742699105557, 14.73993406725545392301282764623

Graph of the $Z$-function along the critical line