Properties

Label 2-75-25.12-c2-0-1
Degree $2$
Conductor $75$
Sign $-0.825 - 0.564i$
Analytic cond. $2.04360$
Root an. cond. $1.42954$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.495 + 3.12i)2-s + (1.54 + 0.786i)3-s + (−5.74 + 1.86i)4-s + (−4.93 + 0.775i)5-s + (−1.69 + 5.21i)6-s + (1.18 + 1.18i)7-s + (−2.92 − 5.74i)8-s + (1.76 + 2.42i)9-s + (−4.87 − 15.0i)10-s + (15.6 + 11.3i)11-s + (−10.3 − 1.63i)12-s + (3.58 − 22.6i)13-s + (−3.12 + 4.30i)14-s + (−8.23 − 2.68i)15-s + (−3.00 + 2.17i)16-s + (8.00 − 4.07i)17-s + ⋯
L(s)  = 1  + (0.247 + 1.56i)2-s + (0.514 + 0.262i)3-s + (−1.43 + 0.466i)4-s + (−0.987 + 0.155i)5-s + (−0.282 + 0.869i)6-s + (0.169 + 0.169i)7-s + (−0.366 − 0.718i)8-s + (0.195 + 0.269i)9-s + (−0.487 − 1.50i)10-s + (1.42 + 1.03i)11-s + (−0.860 − 0.136i)12-s + (0.275 − 1.74i)13-s + (−0.223 + 0.307i)14-s + (−0.548 − 0.179i)15-s + (−0.187 + 0.136i)16-s + (0.470 − 0.239i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.825 - 0.564i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.825 - 0.564i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $-0.825 - 0.564i$
Analytic conductor: \(2.04360\)
Root analytic conductor: \(1.42954\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (37, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :1),\ -0.825 - 0.564i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.421903 + 1.36509i\)
\(L(\frac12)\) \(\approx\) \(0.421903 + 1.36509i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.54 - 0.786i)T \)
5 \( 1 + (4.93 - 0.775i)T \)
good2 \( 1 + (-0.495 - 3.12i)T + (-3.80 + 1.23i)T^{2} \)
7 \( 1 + (-1.18 - 1.18i)T + 49iT^{2} \)
11 \( 1 + (-15.6 - 11.3i)T + (37.3 + 115. i)T^{2} \)
13 \( 1 + (-3.58 + 22.6i)T + (-160. - 52.2i)T^{2} \)
17 \( 1 + (-8.00 + 4.07i)T + (169. - 233. i)T^{2} \)
19 \( 1 + (-1.92 - 0.624i)T + (292. + 212. i)T^{2} \)
23 \( 1 + (9.47 - 1.50i)T + (503. - 163. i)T^{2} \)
29 \( 1 + (-6.89 + 2.23i)T + (680. - 494. i)T^{2} \)
31 \( 1 + (-6.18 + 19.0i)T + (-777. - 564. i)T^{2} \)
37 \( 1 + (6.10 + 0.967i)T + (1.30e3 + 423. i)T^{2} \)
41 \( 1 + (42.5 - 30.9i)T + (519. - 1.59e3i)T^{2} \)
43 \( 1 + (37.0 - 37.0i)T - 1.84e3iT^{2} \)
47 \( 1 + (-31.2 + 61.4i)T + (-1.29e3 - 1.78e3i)T^{2} \)
53 \( 1 + (68.2 + 34.7i)T + (1.65e3 + 2.27e3i)T^{2} \)
59 \( 1 + (-3.79 - 5.21i)T + (-1.07e3 + 3.31e3i)T^{2} \)
61 \( 1 + (-12.5 - 9.12i)T + (1.14e3 + 3.53e3i)T^{2} \)
67 \( 1 + (-109. + 55.7i)T + (2.63e3 - 3.63e3i)T^{2} \)
71 \( 1 + (-24.4 - 75.1i)T + (-4.07e3 + 2.96e3i)T^{2} \)
73 \( 1 + (17.2 - 2.73i)T + (5.06e3 - 1.64e3i)T^{2} \)
79 \( 1 + (-11.5 + 3.74i)T + (5.04e3 - 3.66e3i)T^{2} \)
83 \( 1 + (35.3 + 69.3i)T + (-4.04e3 + 5.57e3i)T^{2} \)
89 \( 1 + (46.9 - 64.6i)T + (-2.44e3 - 7.53e3i)T^{2} \)
97 \( 1 + (7.42 - 14.5i)T + (-5.53e3 - 7.61e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.05090025666111505790119955165, −14.21433471742322178436508017543, −12.87538661619414735724363617833, −11.62978861752272476009950232379, −9.923796259128158001526195938038, −8.482268251539424112785499281833, −7.75682462419600802819953112814, −6.64936464408029242408285231434, −5.04156407802800391839279646075, −3.71940083293662842624512961666, 1.38465373844161639545120618531, 3.45211505394132585146673342538, 4.28390663474328467595816343746, 6.79734408292698575781176104086, 8.517856663854319407201648107735, 9.367576058966509396790587955239, 10.94583755299464704738208362473, 11.74852089541163803322684388626, 12.35483331107230776962059900515, 13.87807148142037748571719418610

Graph of the $Z$-function along the critical line