Properties

Label 2-75-25.11-c3-0-1
Degree $2$
Conductor $75$
Sign $-0.820 - 0.571i$
Analytic cond. $4.42514$
Root an. cond. $2.10360$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.20 − 0.874i)2-s + (−0.927 + 2.85i)3-s + (−1.78 + 5.50i)4-s + (−10.4 − 4.01i)5-s + (1.37 + 4.24i)6-s − 27.0·7-s + (6.33 + 19.5i)8-s + (−7.28 − 5.29i)9-s + (−16.0 + 4.29i)10-s + (10.1 − 7.35i)11-s + (−14.0 − 10.2i)12-s + (−7.47 − 5.43i)13-s + (−32.5 + 23.6i)14-s + (21.1 − 26.0i)15-s + (−12.7 − 9.26i)16-s + (33.8 + 104. i)17-s + ⋯
L(s)  = 1  + (0.425 − 0.309i)2-s + (−0.178 + 0.549i)3-s + (−0.223 + 0.687i)4-s + (−0.933 − 0.358i)5-s + (0.0938 + 0.288i)6-s − 1.46·7-s + (0.280 + 0.862i)8-s + (−0.269 − 0.195i)9-s + (−0.508 + 0.135i)10-s + (0.277 − 0.201i)11-s + (−0.337 − 0.245i)12-s + (−0.159 − 0.115i)13-s + (−0.621 + 0.451i)14-s + (0.363 − 0.448i)15-s + (−0.199 − 0.144i)16-s + (0.483 + 1.48i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.820 - 0.571i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.820 - 0.571i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $-0.820 - 0.571i$
Analytic conductor: \(4.42514\)
Root analytic conductor: \(2.10360\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (61, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :3/2),\ -0.820 - 0.571i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.189513 + 0.603842i\)
\(L(\frac12)\) \(\approx\) \(0.189513 + 0.603842i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.927 - 2.85i)T \)
5 \( 1 + (10.4 + 4.01i)T \)
good2 \( 1 + (-1.20 + 0.874i)T + (2.47 - 7.60i)T^{2} \)
7 \( 1 + 27.0T + 343T^{2} \)
11 \( 1 + (-10.1 + 7.35i)T + (411. - 1.26e3i)T^{2} \)
13 \( 1 + (7.47 + 5.43i)T + (678. + 2.08e3i)T^{2} \)
17 \( 1 + (-33.8 - 104. i)T + (-3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (-27.7 - 85.4i)T + (-5.54e3 + 4.03e3i)T^{2} \)
23 \( 1 + (17.7 - 12.9i)T + (3.75e3 - 1.15e4i)T^{2} \)
29 \( 1 + (4.78 - 14.7i)T + (-1.97e4 - 1.43e4i)T^{2} \)
31 \( 1 + (87.3 + 268. i)T + (-2.41e4 + 1.75e4i)T^{2} \)
37 \( 1 + (182. + 132. i)T + (1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (-232. - 168. i)T + (2.12e4 + 6.55e4i)T^{2} \)
43 \( 1 + 285.T + 7.95e4T^{2} \)
47 \( 1 + (-10.2 + 31.5i)T + (-8.39e4 - 6.10e4i)T^{2} \)
53 \( 1 + (219. - 676. i)T + (-1.20e5 - 8.75e4i)T^{2} \)
59 \( 1 + (-159. - 115. i)T + (6.34e4 + 1.95e5i)T^{2} \)
61 \( 1 + (-195. + 142. i)T + (7.01e4 - 2.15e5i)T^{2} \)
67 \( 1 + (-131. - 403. i)T + (-2.43e5 + 1.76e5i)T^{2} \)
71 \( 1 + (-134. + 412. i)T + (-2.89e5 - 2.10e5i)T^{2} \)
73 \( 1 + (929. - 675. i)T + (1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (299. - 920. i)T + (-3.98e5 - 2.89e5i)T^{2} \)
83 \( 1 + (154. + 476. i)T + (-4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 + (-364. + 264. i)T + (2.17e5 - 6.70e5i)T^{2} \)
97 \( 1 + (-467. + 1.43e3i)T + (-7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.46781768891789800448334500338, −12.98944626533704169241913625920, −12.44567958884468280124320085591, −11.43490187978501603523597039467, −10.07427548097984347036178169079, −8.812206301280980283937427515372, −7.64264738395567601790387397803, −5.86630844303714530927003640418, −4.08059584690147269547568869126, −3.37770599548360995791278944528, 0.35727014780066438708941441317, 3.27935780988327869093231008865, 5.02139188568291168058951344061, 6.61479669552235310479911453636, 7.17392670397050498815850929304, 9.120070083521847868335151263319, 10.22264236279045562597909162007, 11.61223162641530185416987703733, 12.63911540842940417461904347892, 13.65355763277855154177550705695

Graph of the $Z$-function along the critical line