L(s) = 1 | − 3i·3-s − 4·4-s − 11i·7-s − 9·9-s + 12i·12-s − i·13-s + 16·16-s + 37·19-s − 33·21-s + 27i·27-s + 44i·28-s − 13·31-s + 36·36-s − 26i·37-s − 3·39-s + ⋯ |
L(s) = 1 | − i·3-s − 4-s − 1.57i·7-s − 9-s + i·12-s − 0.0769i·13-s + 16-s + 1.94·19-s − 1.57·21-s + i·27-s + 1.57i·28-s − 0.419·31-s + 36-s − 0.702i·37-s − 0.0769·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.474625 - 0.767959i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.474625 - 0.767959i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + 4T^{2} \) |
| 7 | \( 1 + 11iT - 49T^{2} \) |
| 11 | \( 1 - 121T^{2} \) |
| 13 | \( 1 + iT - 169T^{2} \) |
| 17 | \( 1 + 289T^{2} \) |
| 19 | \( 1 - 37T + 361T^{2} \) |
| 23 | \( 1 + 529T^{2} \) |
| 29 | \( 1 - 841T^{2} \) |
| 31 | \( 1 + 13T + 961T^{2} \) |
| 37 | \( 1 + 26iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 1.68e3T^{2} \) |
| 43 | \( 1 + 61iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 2.20e3T^{2} \) |
| 53 | \( 1 + 2.80e3T^{2} \) |
| 59 | \( 1 - 3.48e3T^{2} \) |
| 61 | \( 1 - 47T + 3.72e3T^{2} \) |
| 67 | \( 1 - 109iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 5.04e3T^{2} \) |
| 73 | \( 1 + 46iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 142T + 6.24e3T^{2} \) |
| 83 | \( 1 + 6.88e3T^{2} \) |
| 89 | \( 1 - 7.92e3T^{2} \) |
| 97 | \( 1 - 169iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.76165706987377172305799302461, −13.17807981962901799163044293868, −11.95124334429892887341315238770, −10.58389939498170442206218058872, −9.341114723153192091921942940831, −7.929308817635791345093554598675, −7.09129825850865438987549049126, −5.35047507057977091293151893717, −3.66397516908791709869342815243, −0.859229389880520879695665431533,
3.20203463841436982829307878115, 4.89295320974082660446728005919, 5.75462090382639367735554950455, 8.168283394102852171471206320964, 9.203868736757563951448684387432, 9.788244000507150098621056394312, 11.39499158191839761953432580722, 12.37421305010241471478071671033, 13.76713982750329349389723601579, 14.72730958661177218596959692707