Properties

Label 2-75-1.1-c7-0-6
Degree $2$
Conductor $75$
Sign $1$
Analytic cond. $23.4288$
Root an. cond. $4.84033$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17.7·2-s + 27·3-s + 188.·4-s − 480.·6-s + 1.23e3·7-s − 1.06e3·8-s + 729·9-s + 1.21e3·11-s + 5.08e3·12-s + 1.35e4·13-s − 2.19e4·14-s − 5.06e3·16-s − 1.20e4·17-s − 1.29e4·18-s − 3.28e4·19-s + 3.32e4·21-s − 2.16e4·22-s − 9.42e3·23-s − 2.88e4·24-s − 2.40e5·26-s + 1.96e4·27-s + 2.32e5·28-s − 7.99e4·29-s + 1.13e5·31-s + 2.26e5·32-s + 3.28e4·33-s + 2.15e5·34-s + ⋯
L(s)  = 1  − 1.57·2-s + 0.577·3-s + 1.47·4-s − 0.907·6-s + 1.35·7-s − 0.738·8-s + 0.333·9-s + 0.275·11-s + 0.848·12-s + 1.70·13-s − 2.13·14-s − 0.308·16-s − 0.597·17-s − 0.523·18-s − 1.09·19-s + 0.784·21-s − 0.432·22-s − 0.161·23-s − 0.426·24-s − 2.68·26-s + 0.192·27-s + 1.99·28-s − 0.608·29-s + 0.684·31-s + 1.22·32-s + 0.158·33-s + 0.938·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(23.4288\)
Root analytic conductor: \(4.84033\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.377128648\)
\(L(\frac12)\) \(\approx\) \(1.377128648\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
5 \( 1 \)
good2 \( 1 + 17.7T + 128T^{2} \)
7 \( 1 - 1.23e3T + 8.23e5T^{2} \)
11 \( 1 - 1.21e3T + 1.94e7T^{2} \)
13 \( 1 - 1.35e4T + 6.27e7T^{2} \)
17 \( 1 + 1.20e4T + 4.10e8T^{2} \)
19 \( 1 + 3.28e4T + 8.93e8T^{2} \)
23 \( 1 + 9.42e3T + 3.40e9T^{2} \)
29 \( 1 + 7.99e4T + 1.72e10T^{2} \)
31 \( 1 - 1.13e5T + 2.75e10T^{2} \)
37 \( 1 - 5.18e5T + 9.49e10T^{2} \)
41 \( 1 - 6.04e5T + 1.94e11T^{2} \)
43 \( 1 - 2.91e5T + 2.71e11T^{2} \)
47 \( 1 + 1.09e6T + 5.06e11T^{2} \)
53 \( 1 + 3.05e5T + 1.17e12T^{2} \)
59 \( 1 - 1.44e5T + 2.48e12T^{2} \)
61 \( 1 + 8.00e4T + 3.14e12T^{2} \)
67 \( 1 - 3.79e6T + 6.06e12T^{2} \)
71 \( 1 - 3.66e6T + 9.09e12T^{2} \)
73 \( 1 + 1.67e6T + 1.10e13T^{2} \)
79 \( 1 - 3.76e6T + 1.92e13T^{2} \)
83 \( 1 + 1.77e6T + 2.71e13T^{2} \)
89 \( 1 - 4.41e6T + 4.42e13T^{2} \)
97 \( 1 - 4.60e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.16048583792136995473063082095, −11.31305711574251692394688077332, −10.85588843840413736494873075116, −9.408998257847898540548208918905, −8.446569554205313574028316723086, −7.924635135958612749838947482332, −6.41225730896992552558112744786, −4.26288130300957430163256384767, −2.10417645883994214529100837019, −1.03805817675042484863550453259, 1.03805817675042484863550453259, 2.10417645883994214529100837019, 4.26288130300957430163256384767, 6.41225730896992552558112744786, 7.924635135958612749838947482332, 8.446569554205313574028316723086, 9.408998257847898540548208918905, 10.85588843840413736494873075116, 11.31305711574251692394688077332, 13.16048583792136995473063082095

Graph of the $Z$-function along the critical line