Properties

Label 2-75-1.1-c21-0-57
Degree $2$
Conductor $75$
Sign $-1$
Analytic cond. $209.608$
Root an. cond. $14.4778$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.39e3·2-s − 5.90e4·3-s + 3.64e6·4-s − 1.41e8·6-s − 8.95e8·7-s + 3.69e9·8-s + 3.48e9·9-s − 9.77e10·11-s − 2.15e11·12-s + 8.68e11·13-s − 2.14e12·14-s + 1.22e12·16-s − 5.17e11·17-s + 8.35e12·18-s + 4.21e13·19-s + 5.28e13·21-s − 2.34e14·22-s + 3.07e14·23-s − 2.18e14·24-s + 2.08e15·26-s − 2.05e14·27-s − 3.25e15·28-s − 1.24e15·29-s − 9.49e14·31-s − 4.82e15·32-s + 5.77e15·33-s − 1.24e15·34-s + ⋯
L(s)  = 1  + 1.65·2-s − 0.577·3-s + 1.73·4-s − 0.955·6-s − 1.19·7-s + 1.21·8-s + 0.333·9-s − 1.13·11-s − 1.00·12-s + 1.74·13-s − 1.98·14-s + 0.278·16-s − 0.0622·17-s + 0.551·18-s + 1.57·19-s + 0.691·21-s − 1.88·22-s + 1.54·23-s − 0.703·24-s + 2.89·26-s − 0.192·27-s − 2.07·28-s − 0.548·29-s − 0.208·31-s − 0.757·32-s + 0.656·33-s − 0.103·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(209.608\)
Root analytic conductor: \(14.4778\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 75,\ (\ :21/2),\ -1)\)

Particular Values

\(L(11)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 5.90e4T \)
5 \( 1 \)
good2 \( 1 - 2.39e3T + 2.09e6T^{2} \)
7 \( 1 + 8.95e8T + 5.58e17T^{2} \)
11 \( 1 + 9.77e10T + 7.40e21T^{2} \)
13 \( 1 - 8.68e11T + 2.47e23T^{2} \)
17 \( 1 + 5.17e11T + 6.90e25T^{2} \)
19 \( 1 - 4.21e13T + 7.14e26T^{2} \)
23 \( 1 - 3.07e14T + 3.94e28T^{2} \)
29 \( 1 + 1.24e15T + 5.13e30T^{2} \)
31 \( 1 + 9.49e14T + 2.08e31T^{2} \)
37 \( 1 + 4.84e15T + 8.55e32T^{2} \)
41 \( 1 + 1.03e17T + 7.38e33T^{2} \)
43 \( 1 - 6.02e16T + 2.00e34T^{2} \)
47 \( 1 - 2.18e16T + 1.30e35T^{2} \)
53 \( 1 + 1.86e18T + 1.62e36T^{2} \)
59 \( 1 + 7.16e18T + 1.54e37T^{2} \)
61 \( 1 + 3.96e18T + 3.10e37T^{2} \)
67 \( 1 + 1.14e19T + 2.22e38T^{2} \)
71 \( 1 + 4.31e19T + 7.52e38T^{2} \)
73 \( 1 + 2.81e19T + 1.34e39T^{2} \)
79 \( 1 - 1.32e20T + 7.08e39T^{2} \)
83 \( 1 - 2.04e19T + 1.99e40T^{2} \)
89 \( 1 + 1.36e20T + 8.65e40T^{2} \)
97 \( 1 - 4.85e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.59903356072565123579139225700, −9.186056095221464982794758674743, −7.41723481989945095467099955879, −6.37838523850441532043543525995, −5.67151350806435644400970446257, −4.79557492972913619577258477114, −3.41845255834709053588244521575, −3.03308872062672741686854547053, −1.37127465923005077770130264313, 0, 1.37127465923005077770130264313, 3.03308872062672741686854547053, 3.41845255834709053588244521575, 4.79557492972913619577258477114, 5.67151350806435644400970446257, 6.37838523850441532043543525995, 7.41723481989945095467099955879, 9.186056095221464982794758674743, 10.59903356072565123579139225700

Graph of the $Z$-function along the critical line