Properties

Label 2-75-1.1-c13-0-4
Degree $2$
Conductor $75$
Sign $1$
Analytic cond. $80.4231$
Root an. cond. $8.96789$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·2-s + 729·3-s − 8.04e3·4-s + 8.74e3·6-s − 2.35e5·7-s − 1.94e5·8-s + 5.31e5·9-s − 1.11e7·11-s − 5.86e6·12-s − 8.04e6·13-s − 2.82e6·14-s + 6.35e7·16-s + 1.17e8·17-s + 6.37e6·18-s − 2.14e8·19-s − 1.71e8·21-s − 1.34e8·22-s − 8.30e8·23-s − 1.42e8·24-s − 9.65e7·26-s + 3.87e8·27-s + 1.89e9·28-s − 1.25e9·29-s + 6.15e9·31-s + 2.35e9·32-s − 8.15e9·33-s + 1.40e9·34-s + ⋯
L(s)  = 1  + 0.132·2-s + 0.577·3-s − 0.982·4-s + 0.0765·6-s − 0.755·7-s − 0.262·8-s + 1/3·9-s − 1.90·11-s − 0.567·12-s − 0.462·13-s − 0.100·14-s + 0.947·16-s + 1.18·17-s + 0.0441·18-s − 1.04·19-s − 0.436·21-s − 0.252·22-s − 1.16·23-s − 0.151·24-s − 0.0613·26-s + 0.192·27-s + 0.741·28-s − 0.390·29-s + 1.24·31-s + 0.388·32-s − 1.09·33-s + 0.156·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(80.4231\)
Root analytic conductor: \(8.96789\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(1.066242755\)
\(L(\frac12)\) \(\approx\) \(1.066242755\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p^{6} T \)
5 \( 1 \)
good2 \( 1 - 3 p^{2} T + p^{13} T^{2} \)
7 \( 1 + 33584 p T + p^{13} T^{2} \)
11 \( 1 + 1016628 p T + p^{13} T^{2} \)
13 \( 1 + 8049614 T + p^{13} T^{2} \)
17 \( 1 - 117494622 T + p^{13} T^{2} \)
19 \( 1 + 214061380 T + p^{13} T^{2} \)
23 \( 1 + 830555544 T + p^{13} T^{2} \)
29 \( 1 + 1252400250 T + p^{13} T^{2} \)
31 \( 1 - 6159350552 T + p^{13} T^{2} \)
37 \( 1 - 5498191402 T + p^{13} T^{2} \)
41 \( 1 + 4678687878 T + p^{13} T^{2} \)
43 \( 1 + 7115013764 T + p^{13} T^{2} \)
47 \( 1 - 29528776992 T + p^{13} T^{2} \)
53 \( 1 - 204125042466 T + p^{13} T^{2} \)
59 \( 1 + 29909821020 T + p^{13} T^{2} \)
61 \( 1 + 134392006738 T + p^{13} T^{2} \)
67 \( 1 + 348518801948 T + p^{13} T^{2} \)
71 \( 1 - 1314335409192 T + p^{13} T^{2} \)
73 \( 1 - 1178875922326 T + p^{13} T^{2} \)
79 \( 1 + 1072420659640 T + p^{13} T^{2} \)
83 \( 1 + 1124025139644 T + p^{13} T^{2} \)
89 \( 1 - 2235610909530 T + p^{13} T^{2} \)
97 \( 1 - 14215257165502 T + p^{13} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.32243894955642949153708532886, −10.30779843682636864681395611845, −9.804254613921349637902838214229, −8.435192007404809118737799817910, −7.66308512910425170158560704108, −5.91128484255943175061829890448, −4.75728959687575702353086003618, −3.48172659001884078310196086585, −2.40400945580788702150296170099, −0.47798136406020288441805043728, 0.47798136406020288441805043728, 2.40400945580788702150296170099, 3.48172659001884078310196086585, 4.75728959687575702353086003618, 5.91128484255943175061829890448, 7.66308512910425170158560704108, 8.435192007404809118737799817910, 9.804254613921349637902838214229, 10.30779843682636864681395611845, 12.32243894955642949153708532886

Graph of the $Z$-function along the critical line