Properties

Label 2-75-1.1-c13-0-10
Degree $2$
Conductor $75$
Sign $1$
Analytic cond. $80.4231$
Root an. cond. $8.96789$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 171.·2-s − 729·3-s + 2.11e4·4-s + 1.24e5·6-s + 1.62e5·7-s − 2.22e6·8-s + 5.31e5·9-s + 6.40e6·11-s − 1.54e7·12-s − 2.02e7·13-s − 2.77e7·14-s + 2.08e8·16-s + 1.34e8·17-s − 9.11e7·18-s + 1.95e8·19-s − 1.18e8·21-s − 1.09e9·22-s + 1.34e9·23-s + 1.62e9·24-s + 3.46e9·26-s − 3.87e8·27-s + 3.43e9·28-s + 4.25e9·29-s + 5.99e9·31-s − 1.74e10·32-s − 4.66e9·33-s − 2.30e10·34-s + ⋯
L(s)  = 1  − 1.89·2-s − 0.577·3-s + 2.58·4-s + 1.09·6-s + 0.520·7-s − 3.00·8-s + 0.333·9-s + 1.09·11-s − 1.49·12-s − 1.16·13-s − 0.986·14-s + 3.10·16-s + 1.34·17-s − 0.631·18-s + 0.954·19-s − 0.300·21-s − 2.06·22-s + 1.89·23-s + 1.73·24-s + 2.20·26-s − 0.192·27-s + 1.34·28-s + 1.32·29-s + 1.21·31-s − 2.87·32-s − 0.629·33-s − 2.55·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(80.4231\)
Root analytic conductor: \(8.96789\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(0.9322111704\)
\(L(\frac12)\) \(\approx\) \(0.9322111704\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 729T \)
5 \( 1 \)
good2 \( 1 + 171.T + 8.19e3T^{2} \)
7 \( 1 - 1.62e5T + 9.68e10T^{2} \)
11 \( 1 - 6.40e6T + 3.45e13T^{2} \)
13 \( 1 + 2.02e7T + 3.02e14T^{2} \)
17 \( 1 - 1.34e8T + 9.90e15T^{2} \)
19 \( 1 - 1.95e8T + 4.20e16T^{2} \)
23 \( 1 - 1.34e9T + 5.04e17T^{2} \)
29 \( 1 - 4.25e9T + 1.02e19T^{2} \)
31 \( 1 - 5.99e9T + 2.44e19T^{2} \)
37 \( 1 + 2.63e10T + 2.43e20T^{2} \)
41 \( 1 + 2.26e10T + 9.25e20T^{2} \)
43 \( 1 - 1.75e9T + 1.71e21T^{2} \)
47 \( 1 - 9.16e10T + 5.46e21T^{2} \)
53 \( 1 + 1.75e10T + 2.60e22T^{2} \)
59 \( 1 - 3.03e11T + 1.04e23T^{2} \)
61 \( 1 - 1.25e11T + 1.61e23T^{2} \)
67 \( 1 - 2.29e11T + 5.48e23T^{2} \)
71 \( 1 + 1.77e12T + 1.16e24T^{2} \)
73 \( 1 + 6.66e11T + 1.67e24T^{2} \)
79 \( 1 - 1.73e12T + 4.66e24T^{2} \)
83 \( 1 - 1.27e12T + 8.87e24T^{2} \)
89 \( 1 + 4.87e12T + 2.19e25T^{2} \)
97 \( 1 - 4.88e12T + 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.71983123444254421309714350322, −10.46983793697610532060708087960, −9.700467607708680593799841834380, −8.649500959347223138151865359903, −7.45019853131763193223757799833, −6.69785691833331156788675291834, −5.17321737128865217680599933920, −2.96299652684598594888876457792, −1.41121534497906276126214097037, −0.76018872819097900813837134126, 0.76018872819097900813837134126, 1.41121534497906276126214097037, 2.96299652684598594888876457792, 5.17321737128865217680599933920, 6.69785691833331156788675291834, 7.45019853131763193223757799833, 8.649500959347223138151865359903, 9.700467607708680593799841834380, 10.46983793697610532060708087960, 11.71983123444254421309714350322

Graph of the $Z$-function along the critical line