Properties

Label 2-7488-1.1-c1-0-91
Degree 22
Conductor 74887488
Sign 1-1
Analytic cond. 59.791959.7919
Root an. cond. 7.732527.73252
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s − 4·11-s + 13-s − 2·19-s + 4·23-s − 25-s − 2·31-s − 4·35-s + 10·37-s − 2·41-s + 8·43-s − 3·49-s + 12·53-s − 8·55-s − 12·59-s + 6·61-s + 2·65-s − 6·67-s − 8·71-s − 2·73-s + 8·77-s − 12·79-s + 4·83-s − 14·89-s − 2·91-s − 4·95-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s − 1.20·11-s + 0.277·13-s − 0.458·19-s + 0.834·23-s − 1/5·25-s − 0.359·31-s − 0.676·35-s + 1.64·37-s − 0.312·41-s + 1.21·43-s − 3/7·49-s + 1.64·53-s − 1.07·55-s − 1.56·59-s + 0.768·61-s + 0.248·65-s − 0.733·67-s − 0.949·71-s − 0.234·73-s + 0.911·77-s − 1.35·79-s + 0.439·83-s − 1.48·89-s − 0.209·91-s − 0.410·95-s + ⋯

Functional equation

Λ(s)=(7488s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(7488s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 74887488    =    2632132^{6} \cdot 3^{2} \cdot 13
Sign: 1-1
Analytic conductor: 59.791959.7919
Root analytic conductor: 7.732527.73252
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 7488, ( :1/2), 1)(2,\ 7488,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
13 1T 1 - T
good5 12T+pT2 1 - 2 T + p T^{2}
7 1+2T+pT2 1 + 2 T + p T^{2}
11 1+4T+pT2 1 + 4 T + p T^{2}
17 1+pT2 1 + p T^{2}
19 1+2T+pT2 1 + 2 T + p T^{2}
23 14T+pT2 1 - 4 T + p T^{2}
29 1+pT2 1 + p T^{2}
31 1+2T+pT2 1 + 2 T + p T^{2}
37 110T+pT2 1 - 10 T + p T^{2}
41 1+2T+pT2 1 + 2 T + p T^{2}
43 18T+pT2 1 - 8 T + p T^{2}
47 1+pT2 1 + p T^{2}
53 112T+pT2 1 - 12 T + p T^{2}
59 1+12T+pT2 1 + 12 T + p T^{2}
61 16T+pT2 1 - 6 T + p T^{2}
67 1+6T+pT2 1 + 6 T + p T^{2}
71 1+8T+pT2 1 + 8 T + p T^{2}
73 1+2T+pT2 1 + 2 T + p T^{2}
79 1+12T+pT2 1 + 12 T + p T^{2}
83 14T+pT2 1 - 4 T + p T^{2}
89 1+14T+pT2 1 + 14 T + p T^{2}
97 1+10T+pT2 1 + 10 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.49026915499148598420863229304, −6.82611641620904034974269009642, −5.94660273142565104367971439251, −5.69655062923021187304922056070, −4.77219915335120526458588257092, −3.93999038741216645545048796411, −2.87117150112182190841690637877, −2.45734264446474454889575501395, −1.30745574631339359324468269776, 0, 1.30745574631339359324468269776, 2.45734264446474454889575501395, 2.87117150112182190841690637877, 3.93999038741216645545048796411, 4.77219915335120526458588257092, 5.69655062923021187304922056070, 5.94660273142565104367971439251, 6.82611641620904034974269009642, 7.49026915499148598420863229304

Graph of the ZZ-function along the critical line