Properties

Label 2-7488-1.1-c1-0-85
Degree $2$
Conductor $7488$
Sign $-1$
Analytic cond. $59.7919$
Root an. cond. $7.73252$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.56·5-s + 3.56·7-s + 2·11-s + 13-s − 3.56·17-s − 6·19-s + 7.68·25-s + 8.24·29-s − 1.12·31-s − 12.6·35-s − 2.68·37-s + 1.12·41-s − 11.8·43-s + 10.6·47-s + 5.68·49-s − 13.1·53-s − 7.12·55-s − 6·59-s + 11.3·61-s − 3.56·65-s − 6·67-s − 10.6·71-s + 10·73-s + 7.12·77-s + 12·79-s + 7.36·83-s + 12.6·85-s + ⋯
L(s)  = 1  − 1.59·5-s + 1.34·7-s + 0.603·11-s + 0.277·13-s − 0.863·17-s − 1.37·19-s + 1.53·25-s + 1.53·29-s − 0.201·31-s − 2.14·35-s − 0.441·37-s + 0.175·41-s − 1.80·43-s + 1.55·47-s + 0.812·49-s − 1.80·53-s − 0.960·55-s − 0.781·59-s + 1.45·61-s − 0.441·65-s − 0.733·67-s − 1.26·71-s + 1.17·73-s + 0.811·77-s + 1.35·79-s + 0.808·83-s + 1.37·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7488\)    =    \(2^{6} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(59.7919\)
Root analytic conductor: \(7.73252\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 3.56T + 5T^{2} \)
7 \( 1 - 3.56T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
17 \( 1 + 3.56T + 17T^{2} \)
19 \( 1 + 6T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 8.24T + 29T^{2} \)
31 \( 1 + 1.12T + 31T^{2} \)
37 \( 1 + 2.68T + 37T^{2} \)
41 \( 1 - 1.12T + 41T^{2} \)
43 \( 1 + 11.8T + 43T^{2} \)
47 \( 1 - 10.6T + 47T^{2} \)
53 \( 1 + 13.1T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 - 11.3T + 61T^{2} \)
67 \( 1 + 6T + 67T^{2} \)
71 \( 1 + 10.6T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 - 12T + 79T^{2} \)
83 \( 1 - 7.36T + 83T^{2} \)
89 \( 1 + 8.24T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72094241232081977650438220022, −6.84183841404954672785359877157, −6.41271512730125236255735154944, −5.18100658843356690000311929060, −4.47087145005024048048879342982, −4.17737711598404645504832062210, −3.29507607954844955381963802382, −2.18857996435631769302187881544, −1.21867796196456251070705972321, 0, 1.21867796196456251070705972321, 2.18857996435631769302187881544, 3.29507607954844955381963802382, 4.17737711598404645504832062210, 4.47087145005024048048879342982, 5.18100658843356690000311929060, 6.41271512730125236255735154944, 6.84183841404954672785359877157, 7.72094241232081977650438220022

Graph of the $Z$-function along the critical line