Properties

Label 2-7488-1.1-c1-0-48
Degree $2$
Conductor $7488$
Sign $1$
Analytic cond. $59.7919$
Root an. cond. $7.73252$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 3·7-s + 2·11-s − 13-s + 3·17-s − 2·19-s − 4·23-s − 4·25-s + 2·29-s + 4·31-s + 3·35-s − 5·37-s + 12·41-s − 7·43-s + 9·47-s + 2·49-s + 4·53-s + 2·55-s + 6·59-s + 4·61-s − 65-s + 10·67-s + 15·71-s − 2·73-s + 6·77-s − 8·79-s − 4·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.13·7-s + 0.603·11-s − 0.277·13-s + 0.727·17-s − 0.458·19-s − 0.834·23-s − 4/5·25-s + 0.371·29-s + 0.718·31-s + 0.507·35-s − 0.821·37-s + 1.87·41-s − 1.06·43-s + 1.31·47-s + 2/7·49-s + 0.549·53-s + 0.269·55-s + 0.781·59-s + 0.512·61-s − 0.124·65-s + 1.22·67-s + 1.78·71-s − 0.234·73-s + 0.683·77-s − 0.900·79-s − 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7488\)    =    \(2^{6} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(59.7919\)
Root analytic conductor: \(7.73252\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.772193302\)
\(L(\frac12)\) \(\approx\) \(2.772193302\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 + 7 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.964703245594772929984299285530, −7.26452379598760388338469331118, −6.44784880927663012596041055664, −5.75101064463899872805706654704, −5.13453009003348958858406129103, −4.31169037721870521245593585722, −3.69882720223680610508104183144, −2.47414386983859427575410557935, −1.83509402100962992787287050734, −0.870411349685264859192266368730, 0.870411349685264859192266368730, 1.83509402100962992787287050734, 2.47414386983859427575410557935, 3.69882720223680610508104183144, 4.31169037721870521245593585722, 5.13453009003348958858406129103, 5.75101064463899872805706654704, 6.44784880927663012596041055664, 7.26452379598760388338469331118, 7.964703245594772929984299285530

Graph of the $Z$-function along the critical line