Properties

Label 2-7488-1.1-c1-0-112
Degree $2$
Conductor $7488$
Sign $-1$
Analytic cond. $59.7919$
Root an. cond. $7.73252$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.70·5-s + 3.36·7-s − 5.17·11-s − 13-s − 6.70·17-s − 5.17·19-s + 2.29·25-s − 2·29-s + 8.80·31-s + 9.08·35-s − 2.70·37-s − 3.40·41-s + 8.53·43-s − 3.36·47-s + 4.29·49-s − 11.4·53-s − 13.9·55-s + 2.08·59-s + 3.40·61-s − 2.70·65-s − 12.4·67-s + 10.6·71-s − 6·73-s − 17.4·77-s − 3.09·79-s + 1.54·83-s − 18.1·85-s + ⋯
L(s)  = 1  + 1.20·5-s + 1.27·7-s − 1.56·11-s − 0.277·13-s − 1.62·17-s − 1.18·19-s + 0.459·25-s − 0.371·29-s + 1.58·31-s + 1.53·35-s − 0.444·37-s − 0.531·41-s + 1.30·43-s − 0.490·47-s + 0.614·49-s − 1.56·53-s − 1.88·55-s + 0.271·59-s + 0.435·61-s − 0.335·65-s − 1.52·67-s + 1.26·71-s − 0.702·73-s − 1.98·77-s − 0.347·79-s + 0.169·83-s − 1.96·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7488\)    =    \(2^{6} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(59.7919\)
Root analytic conductor: \(7.73252\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2.70T + 5T^{2} \)
7 \( 1 - 3.36T + 7T^{2} \)
11 \( 1 + 5.17T + 11T^{2} \)
17 \( 1 + 6.70T + 17T^{2} \)
19 \( 1 + 5.17T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 8.80T + 31T^{2} \)
37 \( 1 + 2.70T + 37T^{2} \)
41 \( 1 + 3.40T + 41T^{2} \)
43 \( 1 - 8.53T + 43T^{2} \)
47 \( 1 + 3.36T + 47T^{2} \)
53 \( 1 + 11.4T + 53T^{2} \)
59 \( 1 - 2.08T + 59T^{2} \)
61 \( 1 - 3.40T + 61T^{2} \)
67 \( 1 + 12.4T + 67T^{2} \)
71 \( 1 - 10.6T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 + 3.09T + 79T^{2} \)
83 \( 1 - 1.54T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 16.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69892381117332438310151787157, −6.72379869912176640439953134307, −6.15200390589207589729546383400, −5.32362483713830418527763329447, −4.82108639931415739717508289450, −4.22847109885331744619884987749, −2.71226117087426344504330374653, −2.26389928203892770152407244227, −1.55717328523887547018131238917, 0, 1.55717328523887547018131238917, 2.26389928203892770152407244227, 2.71226117087426344504330374653, 4.22847109885331744619884987749, 4.82108639931415739717508289450, 5.32362483713830418527763329447, 6.15200390589207589729546383400, 6.72379869912176640439953134307, 7.69892381117332438310151787157

Graph of the $Z$-function along the critical line