Properties

Label 2-7440-1.1-c1-0-89
Degree $2$
Conductor $7440$
Sign $-1$
Analytic cond. $59.4086$
Root an. cond. $7.70770$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 1.17·7-s + 9-s − 2·11-s + 0.0917·13-s − 15-s − 6.04·17-s − 1.17·21-s + 1.70·23-s + 25-s − 27-s + 7.95·29-s − 31-s + 2·33-s + 1.17·35-s − 3.35·37-s − 0.0917·39-s − 4.68·41-s + 0.738·43-s + 45-s + 9.12·47-s − 5.63·49-s + 6.04·51-s + 4.97·53-s − 2·55-s − 11.0·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.442·7-s + 0.333·9-s − 0.603·11-s + 0.0254·13-s − 0.258·15-s − 1.46·17-s − 0.255·21-s + 0.356·23-s + 0.200·25-s − 0.192·27-s + 1.47·29-s − 0.179·31-s + 0.348·33-s + 0.197·35-s − 0.551·37-s − 0.0146·39-s − 0.730·41-s + 0.112·43-s + 0.149·45-s + 1.33·47-s − 0.804·49-s + 0.847·51-s + 0.682·53-s − 0.269·55-s − 1.43·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7440\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(59.4086\)
Root analytic conductor: \(7.70770\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7440,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
31 \( 1 + T \)
good7 \( 1 - 1.17T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 0.0917T + 13T^{2} \)
17 \( 1 + 6.04T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 1.70T + 23T^{2} \)
29 \( 1 - 7.95T + 29T^{2} \)
37 \( 1 + 3.35T + 37T^{2} \)
41 \( 1 + 4.68T + 41T^{2} \)
43 \( 1 - 0.738T + 43T^{2} \)
47 \( 1 - 9.12T + 47T^{2} \)
53 \( 1 - 4.97T + 53T^{2} \)
59 \( 1 + 11.0T + 59T^{2} \)
61 \( 1 + 3.26T + 61T^{2} \)
67 \( 1 + 3.85T + 67T^{2} \)
71 \( 1 - 1.21T + 71T^{2} \)
73 \( 1 - 7.66T + 73T^{2} \)
79 \( 1 + 3.52T + 79T^{2} \)
83 \( 1 + 12.5T + 83T^{2} \)
89 \( 1 + 5.77T + 89T^{2} \)
97 \( 1 + 12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41963951397145621851859305053, −6.78060700561801050739994293033, −6.18429280038503082016875287505, −5.38661539576505188699813364066, −4.78954391020416043053887302641, −4.19216974095262438641336417606, −2.99482942769004195950517569942, −2.20896888689304046289931564222, −1.26933595284785679364579699419, 0, 1.26933595284785679364579699419, 2.20896888689304046289931564222, 2.99482942769004195950517569942, 4.19216974095262438641336417606, 4.78954391020416043053887302641, 5.38661539576505188699813364066, 6.18429280038503082016875287505, 6.78060700561801050739994293033, 7.41963951397145621851859305053

Graph of the $Z$-function along the critical line