Properties

Label 2-7440-1.1-c1-0-32
Degree $2$
Conductor $7440$
Sign $1$
Analytic cond. $59.4086$
Root an. cond. $7.70770$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 2·7-s + 9-s + 4·11-s − 4·13-s + 15-s − 6·17-s − 2·21-s + 25-s + 27-s + 4·29-s − 31-s + 4·33-s − 2·35-s + 4·37-s − 4·39-s − 6·41-s + 8·43-s + 45-s + 12·47-s − 3·49-s − 6·51-s − 2·53-s + 4·55-s − 6·59-s + 10·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s + 1.20·11-s − 1.10·13-s + 0.258·15-s − 1.45·17-s − 0.436·21-s + 1/5·25-s + 0.192·27-s + 0.742·29-s − 0.179·31-s + 0.696·33-s − 0.338·35-s + 0.657·37-s − 0.640·39-s − 0.937·41-s + 1.21·43-s + 0.149·45-s + 1.75·47-s − 3/7·49-s − 0.840·51-s − 0.274·53-s + 0.539·55-s − 0.781·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7440\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 31\)
Sign: $1$
Analytic conductor: \(59.4086\)
Root analytic conductor: \(7.70770\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7440,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.413867245\)
\(L(\frac12)\) \(\approx\) \(2.413867245\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
31 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 - 14 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 8 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.925103411201630563889412624958, −6.97345380034827028515170513579, −6.69587345641027245879446645844, −5.97060914346962855475496103984, −4.95494489886708548001303315052, −4.26011497356035344902388089394, −3.53850977057990767312666552761, −2.56901384875670560975924580197, −2.04129144388304018165427341836, −0.74438243992279157409105415040, 0.74438243992279157409105415040, 2.04129144388304018165427341836, 2.56901384875670560975924580197, 3.53850977057990767312666552761, 4.26011497356035344902388089394, 4.95494489886708548001303315052, 5.97060914346962855475496103984, 6.69587345641027245879446645844, 6.97345380034827028515170513579, 7.925103411201630563889412624958

Graph of the $Z$-function along the critical line