L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + i·5-s + 0.999i·8-s + (−0.866 − 0.5i)9-s + (−0.5 + 0.866i)10-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.499 − 0.866i)18-s + (−0.866 + 0.499i)20-s − 25-s + (1.36 − 1.36i)29-s + (−0.866 + 0.499i)32-s + (0.866 − 0.499i)34-s − 0.999i·36-s + (−0.866 + 0.5i)37-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + i·5-s + 0.999i·8-s + (−0.866 − 0.5i)9-s + (−0.5 + 0.866i)10-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.499 − 0.866i)18-s + (−0.866 + 0.499i)20-s − 25-s + (1.36 − 1.36i)29-s + (−0.866 + 0.499i)32-s + (0.866 − 0.499i)34-s − 0.999i·36-s + (−0.866 + 0.5i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.166 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.166 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.464052464\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.464052464\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 - iT \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
good | 3 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.133 - 0.5i)T + (-0.866 - 0.5i)T^{2} \) |
| 67 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (1 + i)T + iT^{2} \) |
| 79 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 83 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + (0.5 + 1.86i)T + (-0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + 1.73T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99084945834413878145983543302, −10.02913424666341678169909155311, −8.904932170696850592005342927386, −7.925050925981699548378780947405, −7.13405408471555076256760807172, −6.27187084497638680750546371118, −5.61800805877455403063854783559, −4.38192199185416200915025067144, −3.24791354945668227586490716986, −2.55604529841625931071427480001,
1.44415463942121210603204209397, 2.80144763278416741010262044482, 3.96896136100766709259412529670, 5.00090472267369864288036427568, 5.60499459741940231579639292109, 6.59045170453058589149057285217, 7.921243420314088278954123553002, 8.706323272906228129238647344075, 9.674016081551268435560383385089, 10.59878287025958678488902314947