L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s − 0.999·8-s + (−0.866 + 0.5i)9-s + (−0.499 + 0.866i)10-s + (−0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + (−0.866 − 0.499i)18-s − 0.999·20-s + (−0.499 + 0.866i)25-s + (0.366 − 0.366i)29-s + (0.499 − 0.866i)32-s + (0.866 + 0.499i)34-s − 0.999i·36-s + (0.5 − 0.866i)37-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s − 0.999·8-s + (−0.866 + 0.5i)9-s + (−0.499 + 0.866i)10-s + (−0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + (−0.866 − 0.499i)18-s − 0.999·20-s + (−0.499 + 0.866i)25-s + (0.366 − 0.366i)29-s + (0.499 − 0.866i)32-s + (0.866 + 0.499i)34-s − 0.999i·36-s + (0.5 − 0.866i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.501 - 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.501 - 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.159264263\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.159264263\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 7 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (1.86 - 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-1 + i)T - iT^{2} \) |
| 79 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 83 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.133i)T + (0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + 1.73iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97064404882227763332563421188, −9.872801313763093227550469840766, −9.085977957989118253671985713452, −7.976684975844693786211637533087, −7.40781059875336606638964225870, −6.29347289060867962412606591786, −5.73357111130998480011409002232, −4.74767562791917414200360054618, −3.38705646808784961804865351769, −2.53150957590109695689596552981,
1.18650984517537811091964955515, 2.59197125658397918543742063870, 3.71429227809838839125525544229, 4.81289940774018761250187815729, 5.68424962340427503687408290502, 6.32466421380189644502150852783, 7.985002539397403184741002760297, 8.890435757547006821265797883768, 9.487191724931224059379683108775, 10.34680491369231432876513830953