Properties

Label 2-740-1.1-c3-0-21
Degree $2$
Conductor $740$
Sign $-1$
Analytic cond. $43.6614$
Root an. cond. $6.60767$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·3-s + 5·5-s + 4·7-s + 37·9-s − 20·11-s − 10·13-s − 40·15-s − 62·17-s + 8·19-s − 32·21-s + 192·23-s + 25·25-s − 80·27-s − 154·29-s + 124·31-s + 160·33-s + 20·35-s + 37·37-s + 80·39-s + 186·41-s + 92·43-s + 185·45-s + 476·47-s − 327·49-s + 496·51-s − 258·53-s − 100·55-s + ⋯
L(s)  = 1  − 1.53·3-s + 0.447·5-s + 0.215·7-s + 1.37·9-s − 0.548·11-s − 0.213·13-s − 0.688·15-s − 0.884·17-s + 0.0965·19-s − 0.332·21-s + 1.74·23-s + 1/5·25-s − 0.570·27-s − 0.986·29-s + 0.718·31-s + 0.844·33-s + 0.0965·35-s + 0.164·37-s + 0.328·39-s + 0.708·41-s + 0.326·43-s + 0.612·45-s + 1.47·47-s − 0.953·49-s + 1.36·51-s − 0.668·53-s − 0.245·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(740\)    =    \(2^{2} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(43.6614\)
Root analytic conductor: \(6.60767\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 740,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p T \)
37 \( 1 - p T \)
good3 \( 1 + 8 T + p^{3} T^{2} \)
7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 + 20 T + p^{3} T^{2} \)
13 \( 1 + 10 T + p^{3} T^{2} \)
17 \( 1 + 62 T + p^{3} T^{2} \)
19 \( 1 - 8 T + p^{3} T^{2} \)
23 \( 1 - 192 T + p^{3} T^{2} \)
29 \( 1 + 154 T + p^{3} T^{2} \)
31 \( 1 - 4 p T + p^{3} T^{2} \)
41 \( 1 - 186 T + p^{3} T^{2} \)
43 \( 1 - 92 T + p^{3} T^{2} \)
47 \( 1 - 476 T + p^{3} T^{2} \)
53 \( 1 + 258 T + p^{3} T^{2} \)
59 \( 1 + 176 T + p^{3} T^{2} \)
61 \( 1 + 458 T + p^{3} T^{2} \)
67 \( 1 - 336 T + p^{3} T^{2} \)
71 \( 1 + 232 T + p^{3} T^{2} \)
73 \( 1 + 470 T + p^{3} T^{2} \)
79 \( 1 + 676 T + p^{3} T^{2} \)
83 \( 1 + 608 T + p^{3} T^{2} \)
89 \( 1 + 102 T + p^{3} T^{2} \)
97 \( 1 + 30 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.709980029515795583295850984572, −8.849122049786096672365681603392, −7.54820859351736399026364923981, −6.74360585180789760453569142101, −5.88785569470062002210102315622, −5.14530903165549573481897656362, −4.40319655000327813824121463414, −2.70430894877784115189691868195, −1.24665132713857939188661949730, 0, 1.24665132713857939188661949730, 2.70430894877784115189691868195, 4.40319655000327813824121463414, 5.14530903165549573481897656362, 5.88785569470062002210102315622, 6.74360585180789760453569142101, 7.54820859351736399026364923981, 8.849122049786096672365681603392, 9.709980029515795583295850984572

Graph of the $Z$-function along the critical line