Properties

Label 2-74-37.33-c3-0-5
Degree $2$
Conductor $74$
Sign $0.579 + 0.815i$
Analytic cond. $4.36614$
Root an. cond. $2.08953$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.347 − 1.96i)2-s + (0.551 + 3.12i)3-s + (−3.75 − 1.36i)4-s + (7.17 − 6.02i)5-s + 6.35·6-s + (7.01 − 5.88i)7-s + (−4 + 6.92i)8-s + (15.8 − 5.78i)9-s + (−9.36 − 16.2i)10-s + (21.0 − 36.4i)11-s + (2.20 − 12.5i)12-s + (47.5 + 17.3i)13-s + (−9.16 − 15.8i)14-s + (22.7 + 19.1i)15-s + (12.2 + 10.2i)16-s + (−120. + 43.8i)17-s + ⋯
L(s)  = 1  + (0.122 − 0.696i)2-s + (0.106 + 0.602i)3-s + (−0.469 − 0.171i)4-s + (0.641 − 0.538i)5-s + 0.432·6-s + (0.378 − 0.318i)7-s + (−0.176 + 0.306i)8-s + (0.588 − 0.214i)9-s + (−0.296 − 0.513i)10-s + (0.577 − 0.999i)11-s + (0.0530 − 0.301i)12-s + (1.01 + 0.369i)13-s + (−0.174 − 0.302i)14-s + (0.392 + 0.329i)15-s + (0.191 + 0.160i)16-s + (−1.71 + 0.624i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.579 + 0.815i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.579 + 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $0.579 + 0.815i$
Analytic conductor: \(4.36614\)
Root analytic conductor: \(2.08953\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{74} (33, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :3/2),\ 0.579 + 0.815i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.60466 - 0.828493i\)
\(L(\frac12)\) \(\approx\) \(1.60466 - 0.828493i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.347 + 1.96i)T \)
37 \( 1 + (-29.1 - 223. i)T \)
good3 \( 1 + (-0.551 - 3.12i)T + (-25.3 + 9.23i)T^{2} \)
5 \( 1 + (-7.17 + 6.02i)T + (21.7 - 123. i)T^{2} \)
7 \( 1 + (-7.01 + 5.88i)T + (59.5 - 337. i)T^{2} \)
11 \( 1 + (-21.0 + 36.4i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (-47.5 - 17.3i)T + (1.68e3 + 1.41e3i)T^{2} \)
17 \( 1 + (120. - 43.8i)T + (3.76e3 - 3.15e3i)T^{2} \)
19 \( 1 + (19.9 + 113. i)T + (-6.44e3 + 2.34e3i)T^{2} \)
23 \( 1 + (-51.0 - 88.3i)T + (-6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + (61.2 - 106. i)T + (-1.21e4 - 2.11e4i)T^{2} \)
31 \( 1 + 59.7T + 2.97e4T^{2} \)
41 \( 1 + (76.1 + 27.7i)T + (5.27e4 + 4.43e4i)T^{2} \)
43 \( 1 - 39.8T + 7.95e4T^{2} \)
47 \( 1 + (162. + 281. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (400. + 336. i)T + (2.58e4 + 1.46e5i)T^{2} \)
59 \( 1 + (-135. - 113. i)T + (3.56e4 + 2.02e5i)T^{2} \)
61 \( 1 + (-195. - 71.2i)T + (1.73e5 + 1.45e5i)T^{2} \)
67 \( 1 + (551. - 462. i)T + (5.22e4 - 2.96e5i)T^{2} \)
71 \( 1 + (110. + 626. i)T + (-3.36e5 + 1.22e5i)T^{2} \)
73 \( 1 - 578.T + 3.89e5T^{2} \)
79 \( 1 + (36.6 - 30.7i)T + (8.56e4 - 4.85e5i)T^{2} \)
83 \( 1 + (-718. + 261. i)T + (4.38e5 - 3.67e5i)T^{2} \)
89 \( 1 + (124. + 104. i)T + (1.22e5 + 6.94e5i)T^{2} \)
97 \( 1 + (-407. - 705. i)T + (-4.56e5 + 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46463535221561348994119411113, −13.19003301602620371383891635282, −11.37706915289579360441246850827, −10.76796725802982716045365323455, −9.270860884502161029683376802379, −8.774604419228113007959355473114, −6.54139695112353471015743982704, −4.89786197047319955073353782535, −3.70567241672580143915932962666, −1.44018420698902136421200125666, 1.99622247036476750767917685921, 4.39252133795219522540164337811, 6.13155788343747896201021758079, 6.99235771364680633512669649699, 8.258844482913569114770793526862, 9.564271057418301565111674785975, 10.86413324590856497758501539774, 12.40751993653437621359260689684, 13.31377014204792955927641471174, 14.24714759449038731531225363644

Graph of the $Z$-function along the critical line