L(s) = 1 | + (0.342 + 0.939i)2-s + (0.326 + 0.118i)3-s + (−0.766 + 0.642i)4-s + (0.839 − 0.148i)5-s + 0.347i·6-s + (0.240 + 1.36i)7-s + (−0.866 − 0.500i)8-s + (−2.20 − 1.85i)9-s + (0.426 + 0.738i)10-s + (0.466 − 0.807i)11-s + (−0.326 + 0.118i)12-s + (−2.34 − 2.78i)13-s + (−1.19 + 0.692i)14-s + (0.291 + 0.0514i)15-s + (0.173 − 0.984i)16-s + (2.84 − 3.39i)17-s + ⋯ |
L(s) = 1 | + (0.241 + 0.664i)2-s + (0.188 + 0.0685i)3-s + (−0.383 + 0.321i)4-s + (0.375 − 0.0662i)5-s + 0.141i·6-s + (0.0908 + 0.515i)7-s + (−0.306 − 0.176i)8-s + (−0.735 − 0.616i)9-s + (0.134 + 0.233i)10-s + (0.140 − 0.243i)11-s + (−0.0942 + 0.0342i)12-s + (−0.649 − 0.773i)13-s + (−0.320 + 0.185i)14-s + (0.0752 + 0.0132i)15-s + (0.0434 − 0.246i)16-s + (0.690 − 0.822i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.636 - 0.771i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.636 - 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.957343 + 0.451318i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.957343 + 0.451318i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.342 - 0.939i)T \) |
| 37 | \( 1 + (-1.15 - 5.97i)T \) |
good | 3 | \( 1 + (-0.326 - 0.118i)T + (2.29 + 1.92i)T^{2} \) |
| 5 | \( 1 + (-0.839 + 0.148i)T + (4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (-0.240 - 1.36i)T + (-6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (-0.466 + 0.807i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.34 + 2.78i)T + (-2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (-2.84 + 3.39i)T + (-2.95 - 16.7i)T^{2} \) |
| 19 | \( 1 + (1.30 - 3.59i)T + (-14.5 - 12.2i)T^{2} \) |
| 23 | \( 1 + (-0.920 + 0.531i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.873 - 0.504i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.33iT - 31T^{2} \) |
| 41 | \( 1 + (0.186 - 0.156i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 - 5.13iT - 43T^{2} \) |
| 47 | \( 1 + (-3.89 - 6.75i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.25 + 12.7i)T + (-49.8 - 18.1i)T^{2} \) |
| 59 | \( 1 + (9.61 + 1.69i)T + (55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-0.255 - 0.304i)T + (-10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (2.47 + 14.0i)T + (-62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (-12.8 - 4.67i)T + (54.3 + 45.6i)T^{2} \) |
| 73 | \( 1 + 13.1T + 73T^{2} \) |
| 79 | \( 1 + (-3.43 + 0.605i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (12.8 + 10.7i)T + (14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (-6.19 - 1.09i)T + (83.6 + 30.4i)T^{2} \) |
| 97 | \( 1 + (-6.47 + 3.73i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.66881415660353042637821186834, −13.98384676084889000685589781391, −12.63473095090939545961575992414, −11.72734522133512595036373031581, −10.00147351595951351584387000234, −8.917788285720514549558166152836, −7.80346798402124169414641328814, −6.21786378394417933084008698964, −5.18612393138735563812583515025, −3.15142266030834501031636738799,
2.30041708353806212635810130905, 4.21432052587269823651922698858, 5.76299559646189544573590098072, 7.47088639121353521904711767998, 8.935182999307037125198464448526, 10.10553876755390729342022644947, 11.13153306834660212294718302589, 12.22237941282082469743621718439, 13.48508265528956214292706359324, 14.13495892563717408511072779660