L(s) = 1 | + (−0.5 − 0.866i)2-s + (−1.26 + 2.19i)3-s + (−0.499 + 0.866i)4-s + (−1.97 + 3.42i)5-s + 2.53·6-s + (1.26 − 2.19i)7-s + 0.999·8-s + (−1.71 − 2.96i)9-s + 3.95·10-s + 2.42·11-s + (−1.26 − 2.19i)12-s + (−1 + 1.73i)13-s − 2.53·14-s + (−5.01 − 8.68i)15-s + (−0.5 − 0.866i)16-s + (3.03 + 5.25i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.731 + 1.26i)3-s + (−0.249 + 0.433i)4-s + (−0.884 + 1.53i)5-s + 1.03·6-s + (0.478 − 0.829i)7-s + 0.353·8-s + (−0.570 − 0.987i)9-s + 1.25·10-s + 0.730·11-s + (−0.365 − 0.633i)12-s + (−0.277 + 0.480i)13-s − 0.677·14-s + (−1.29 − 2.24i)15-s + (−0.125 − 0.216i)16-s + (0.735 + 1.27i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.150 - 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.150 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.429524 + 0.369205i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.429524 + 0.369205i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.0222 - 6.08i)T \) |
good | 3 | \( 1 + (1.26 - 2.19i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.97 - 3.42i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.26 + 2.19i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 - 2.42T + 11T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.03 - 5.25i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.74 + 3.02i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 0.955T + 23T^{2} \) |
| 29 | \( 1 - 1.53T + 29T^{2} \) |
| 31 | \( 1 - 7.48T + 31T^{2} \) |
| 41 | \( 1 + (-4.24 + 7.35i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 4.11T + 43T^{2} \) |
| 47 | \( 1 + 11.4T + 47T^{2} \) |
| 53 | \( 1 + (4.21 + 7.29i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.11 + 3.65i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.232 - 0.403i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.21 + 5.56i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.732 + 1.26i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 0.421T + 73T^{2} \) |
| 79 | \( 1 + (1.32 - 2.29i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.68 - 2.92i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-5.20 - 9.00i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 10.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.89233620902077356646101164917, −14.06007973838360505594506071105, −11.97011988276023696699860028343, −11.21915110481282342558471383101, −10.57438934503834185513821980412, −9.770078908630066632342449484864, −7.949830522824951245566425204696, −6.60238576215399886777773952153, −4.44228348321657210616630175821, −3.50830827326973275751603700338,
1.04701229545292129802348670970, 4.87238793835004083883923872346, 5.91975186596407756035892670039, 7.50971158780724160299084532504, 8.225214218751247309642443753991, 9.416983798298869430022698571919, 11.68882997317237133323940663936, 12.03323999143068876605545482314, 12.98282146805041547260508613251, 14.34934916080836460902366219729