Properties

Label 2-74-37.12-c3-0-4
Degree $2$
Conductor $74$
Sign $0.985 + 0.172i$
Analytic cond. $4.36614$
Root an. cond. $2.08953$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.53 − 1.28i)2-s + (4.80 + 4.03i)3-s + (0.694 − 3.93i)4-s + (14.5 − 5.31i)5-s + 12.5·6-s + (−23.2 + 8.47i)7-s + (−4.00 − 6.92i)8-s + (2.14 + 12.1i)9-s + (15.5 − 26.9i)10-s + (23.4 + 40.6i)11-s + (19.2 − 16.1i)12-s + (6.16 − 34.9i)13-s + (−24.7 + 42.9i)14-s + (91.5 + 33.3i)15-s + (−15.0 − 5.47i)16-s + (−5.54 − 31.4i)17-s + ⋯
L(s)  = 1  + (0.541 − 0.454i)2-s + (0.924 + 0.775i)3-s + (0.0868 − 0.492i)4-s + (1.30 − 0.475i)5-s + 0.853·6-s + (−1.25 + 0.457i)7-s + (−0.176 − 0.306i)8-s + (0.0793 + 0.450i)9-s + (0.491 − 0.850i)10-s + (0.643 + 1.11i)11-s + (0.462 − 0.387i)12-s + (0.131 − 0.746i)13-s + (−0.473 + 0.819i)14-s + (1.57 + 0.573i)15-s + (−0.234 − 0.0855i)16-s + (−0.0791 − 0.448i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.172i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.985 + 0.172i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $0.985 + 0.172i$
Analytic conductor: \(4.36614\)
Root analytic conductor: \(2.08953\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{74} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :3/2),\ 0.985 + 0.172i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.65480 - 0.230166i\)
\(L(\frac12)\) \(\approx\) \(2.65480 - 0.230166i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.53 + 1.28i)T \)
37 \( 1 + (62.5 - 216. i)T \)
good3 \( 1 + (-4.80 - 4.03i)T + (4.68 + 26.5i)T^{2} \)
5 \( 1 + (-14.5 + 5.31i)T + (95.7 - 80.3i)T^{2} \)
7 \( 1 + (23.2 - 8.47i)T + (262. - 220. i)T^{2} \)
11 \( 1 + (-23.4 - 40.6i)T + (-665.5 + 1.15e3i)T^{2} \)
13 \( 1 + (-6.16 + 34.9i)T + (-2.06e3 - 751. i)T^{2} \)
17 \( 1 + (5.54 + 31.4i)T + (-4.61e3 + 1.68e3i)T^{2} \)
19 \( 1 + (82.3 + 69.0i)T + (1.19e3 + 6.75e3i)T^{2} \)
23 \( 1 + (90.0 - 156. i)T + (-6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + (-50.8 - 88.0i)T + (-1.21e4 + 2.11e4i)T^{2} \)
31 \( 1 + 138.T + 2.97e4T^{2} \)
41 \( 1 + (-61.4 + 348. i)T + (-6.47e4 - 2.35e4i)T^{2} \)
43 \( 1 + 342.T + 7.95e4T^{2} \)
47 \( 1 + (-177. + 307. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (-128. - 46.7i)T + (1.14e5 + 9.56e4i)T^{2} \)
59 \( 1 + (20.6 + 7.50i)T + (1.57e5 + 1.32e5i)T^{2} \)
61 \( 1 + (64.8 - 367. i)T + (-2.13e5 - 7.76e4i)T^{2} \)
67 \( 1 + (-411. + 149. i)T + (2.30e5 - 1.93e5i)T^{2} \)
71 \( 1 + (-575. - 483. i)T + (6.21e4 + 3.52e5i)T^{2} \)
73 \( 1 - 587.T + 3.89e5T^{2} \)
79 \( 1 + (-1.30e3 + 474. i)T + (3.77e5 - 3.16e5i)T^{2} \)
83 \( 1 + (-122. - 693. i)T + (-5.37e5 + 1.95e5i)T^{2} \)
89 \( 1 + (-52.5 - 19.1i)T + (5.40e5 + 4.53e5i)T^{2} \)
97 \( 1 + (-367. + 636. i)T + (-4.56e5 - 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.88289768052575127783067855572, −13.12236143740934862734379439478, −12.19545833501946284642746266078, −10.24925280545132311260563742347, −9.572325099573739104840928300599, −8.961376005007379034382139913312, −6.58953051262908800176339173568, −5.25204132241355992922291654875, −3.63877302453910346089480157960, −2.24335342343008486386971656391, 2.20599631443775439557033835428, 3.65452984224317874687363302477, 6.25642305622465118617359648393, 6.53484818696075412917746224694, 8.229088240209047745434322988666, 9.373483614837666893906434992092, 10.65664135009461238459130467313, 12.53919340396078427267314123358, 13.34708620688561228198604064075, 14.05297437608270219504760085514

Graph of the $Z$-function along the critical line