Properties

Label 2-74-1.1-c7-0-0
Degree $2$
Conductor $74$
Sign $1$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 39.6·3-s + 64·4-s − 332.·5-s + 317.·6-s − 135.·7-s − 512·8-s − 614.·9-s + 2.66e3·10-s − 6.18e3·11-s − 2.53e3·12-s − 9.39e3·13-s + 1.08e3·14-s + 1.31e4·15-s + 4.09e3·16-s − 4.30e3·17-s + 4.91e3·18-s − 1.58e4·19-s − 2.12e4·20-s + 5.38e3·21-s + 4.94e4·22-s − 1.04e5·23-s + 2.03e4·24-s + 3.25e4·25-s + 7.51e4·26-s + 1.11e5·27-s − 8.69e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.847·3-s + 0.5·4-s − 1.19·5-s + 0.599·6-s − 0.149·7-s − 0.353·8-s − 0.281·9-s + 0.841·10-s − 1.40·11-s − 0.423·12-s − 1.18·13-s + 0.105·14-s + 1.00·15-s + 0.250·16-s − 0.212·17-s + 0.198·18-s − 0.528·19-s − 0.595·20-s + 0.126·21-s + 0.990·22-s − 1.79·23-s + 0.299·24-s + 0.417·25-s + 0.838·26-s + 1.08·27-s − 0.0748·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $1$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.1150172936\)
\(L(\frac12)\) \(\approx\) \(0.1150172936\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
37 \( 1 + 5.06e4T \)
good3 \( 1 + 39.6T + 2.18e3T^{2} \)
5 \( 1 + 332.T + 7.81e4T^{2} \)
7 \( 1 + 135.T + 8.23e5T^{2} \)
11 \( 1 + 6.18e3T + 1.94e7T^{2} \)
13 \( 1 + 9.39e3T + 6.27e7T^{2} \)
17 \( 1 + 4.30e3T + 4.10e8T^{2} \)
19 \( 1 + 1.58e4T + 8.93e8T^{2} \)
23 \( 1 + 1.04e5T + 3.40e9T^{2} \)
29 \( 1 - 9.39e4T + 1.72e10T^{2} \)
31 \( 1 - 1.18e5T + 2.75e10T^{2} \)
41 \( 1 - 5.78e5T + 1.94e11T^{2} \)
43 \( 1 - 1.01e6T + 2.71e11T^{2} \)
47 \( 1 + 1.05e6T + 5.06e11T^{2} \)
53 \( 1 + 2.30e5T + 1.17e12T^{2} \)
59 \( 1 + 2.22e6T + 2.48e12T^{2} \)
61 \( 1 - 1.26e6T + 3.14e12T^{2} \)
67 \( 1 - 1.31e6T + 6.06e12T^{2} \)
71 \( 1 + 2.73e6T + 9.09e12T^{2} \)
73 \( 1 + 5.21e6T + 1.10e13T^{2} \)
79 \( 1 + 2.42e6T + 1.92e13T^{2} \)
83 \( 1 - 1.69e6T + 2.71e13T^{2} \)
89 \( 1 + 5.89e6T + 4.42e13T^{2} \)
97 \( 1 + 6.48e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.62075445162935999074250933097, −11.86852454138445532416450422670, −10.92247183125633917491922270048, −9.969921546821394252877168422631, −8.280346651031260174416178462361, −7.51930271068911929577836760345, −6.04422340256838188417480087770, −4.58670570594933045740155239058, −2.64778034547260045751776077716, −0.24193973982999600292923148944, 0.24193973982999600292923148944, 2.64778034547260045751776077716, 4.58670570594933045740155239058, 6.04422340256838188417480087770, 7.51930271068911929577836760345, 8.280346651031260174416178462361, 9.969921546821394252877168422631, 10.92247183125633917491922270048, 11.86852454138445532416450422670, 12.62075445162935999074250933097

Graph of the $Z$-function along the critical line