L(s) = 1 | − 2.14·3-s + 5-s + 1.14·7-s + 1.60·9-s + 5.89·11-s + 4.89·13-s − 2.14·15-s − 5.89·17-s − 2.34·19-s − 2.45·21-s − 23-s + 25-s + 3.00·27-s − 3.74·29-s − 5.68·31-s − 12.6·33-s + 1.14·35-s − 4·37-s − 10.4·39-s − 1.05·41-s + 11.4·43-s + 1.60·45-s − 7.74·47-s − 5.68·49-s + 12.6·51-s − 12.9·53-s + 5.89·55-s + ⋯ |
L(s) = 1 | − 1.23·3-s + 0.447·5-s + 0.432·7-s + 0.533·9-s + 1.77·11-s + 1.35·13-s − 0.553·15-s − 1.42·17-s − 0.538·19-s − 0.536·21-s − 0.208·23-s + 0.200·25-s + 0.577·27-s − 0.695·29-s − 1.02·31-s − 2.20·33-s + 0.193·35-s − 0.657·37-s − 1.68·39-s − 0.165·41-s + 1.75·43-s + 0.238·45-s − 1.12·47-s − 0.812·49-s + 1.76·51-s − 1.78·53-s + 0.794·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 23 | \( 1 + T \) |
good | 3 | \( 1 + 2.14T + 3T^{2} \) |
| 7 | \( 1 - 1.14T + 7T^{2} \) |
| 11 | \( 1 - 5.89T + 11T^{2} \) |
| 13 | \( 1 - 4.89T + 13T^{2} \) |
| 17 | \( 1 + 5.89T + 17T^{2} \) |
| 19 | \( 1 + 2.34T + 19T^{2} \) |
| 29 | \( 1 + 3.74T + 29T^{2} \) |
| 31 | \( 1 + 5.68T + 31T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 + 1.05T + 41T^{2} \) |
| 43 | \( 1 - 11.4T + 43T^{2} \) |
| 47 | \( 1 + 7.74T + 47T^{2} \) |
| 53 | \( 1 + 12.9T + 53T^{2} \) |
| 59 | \( 1 - 0.797T + 59T^{2} \) |
| 61 | \( 1 + 13.8T + 61T^{2} \) |
| 67 | \( 1 + 15.5T + 67T^{2} \) |
| 71 | \( 1 + 2.94T + 71T^{2} \) |
| 73 | \( 1 - 6.32T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 0.912T + 83T^{2} \) |
| 89 | \( 1 + 15.4T + 89T^{2} \) |
| 97 | \( 1 - 13.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.33376090863011107868147408649, −6.41544173273651734393787299669, −6.33302603927934448283351094776, −5.65517782601438631137421441792, −4.67647096424725255638775150203, −4.19068374196461224466068511198, −3.30040422528821150970767504078, −1.83638364502329388862135036578, −1.33945905739843124040361345645, 0,
1.33945905739843124040361345645, 1.83638364502329388862135036578, 3.30040422528821150970767504078, 4.19068374196461224466068511198, 4.67647096424725255638775150203, 5.65517782601438631137421441792, 6.33302603927934448283351094776, 6.41544173273651734393787299669, 7.33376090863011107868147408649