Properties

Label 2-7360-1.1-c1-0-128
Degree $2$
Conductor $7360$
Sign $1$
Analytic cond. $58.7698$
Root an. cond. $7.66615$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.95·3-s − 5-s + 3.95·7-s + 5.74·9-s + 0.957·11-s + 2.74·13-s − 2.95·15-s + 5.74·17-s + 6.74·19-s + 11.7·21-s + 23-s + 25-s + 8.12·27-s − 5.21·29-s − 5.95·31-s + 2.83·33-s − 3.95·35-s − 9.12·37-s + 8.12·39-s + 0.252·41-s − 8·43-s − 5.74·45-s + 5.49·47-s + 8.66·49-s + 16.9·51-s + 7.12·53-s − 0.957·55-s + ⋯
L(s)  = 1  + 1.70·3-s − 0.447·5-s + 1.49·7-s + 1.91·9-s + 0.288·11-s + 0.761·13-s − 0.763·15-s + 1.39·17-s + 1.54·19-s + 2.55·21-s + 0.208·23-s + 0.200·25-s + 1.56·27-s − 0.967·29-s − 1.07·31-s + 0.493·33-s − 0.668·35-s − 1.50·37-s + 1.30·39-s + 0.0394·41-s − 1.21·43-s − 0.856·45-s + 0.801·47-s + 1.23·49-s + 2.38·51-s + 0.978·53-s − 0.129·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7360\)    =    \(2^{6} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(58.7698\)
Root analytic conductor: \(7.66615\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7360} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.269183528\)
\(L(\frac12)\) \(\approx\) \(5.269183528\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good3 \( 1 - 2.95T + 3T^{2} \)
7 \( 1 - 3.95T + 7T^{2} \)
11 \( 1 - 0.957T + 11T^{2} \)
13 \( 1 - 2.74T + 13T^{2} \)
17 \( 1 - 5.74T + 17T^{2} \)
19 \( 1 - 6.74T + 19T^{2} \)
29 \( 1 + 5.21T + 29T^{2} \)
31 \( 1 + 5.95T + 31T^{2} \)
37 \( 1 + 9.12T + 37T^{2} \)
41 \( 1 - 0.252T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 - 5.49T + 47T^{2} \)
53 \( 1 - 7.12T + 53T^{2} \)
59 \( 1 - 4.78T + 59T^{2} \)
61 \( 1 + 12.4T + 61T^{2} \)
67 \( 1 + 9.12T + 67T^{2} \)
71 \( 1 - 1.66T + 71T^{2} \)
73 \( 1 - 12.3T + 73T^{2} \)
79 \( 1 - 11.8T + 79T^{2} \)
83 \( 1 + 0.704T + 83T^{2} \)
89 \( 1 + 15.8T + 89T^{2} \)
97 \( 1 + 10.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.928861824920987974238626384977, −7.52498088753591487761231511298, −6.95124263927436983429807544120, −5.52933020844134144541576628338, −5.08901551220021162858767696005, −3.92347325301627015323643884891, −3.62340092067223402639211818421, −2.83019553779538118063655167100, −1.68424034203220734829280082724, −1.27722771810636960045311929361, 1.27722771810636960045311929361, 1.68424034203220734829280082724, 2.83019553779538118063655167100, 3.62340092067223402639211818421, 3.92347325301627015323643884891, 5.08901551220021162858767696005, 5.52933020844134144541576628338, 6.95124263927436983429807544120, 7.52498088753591487761231511298, 7.928861824920987974238626384977

Graph of the $Z$-function along the critical line