Properties

Label 2-7350-1.1-c1-0-87
Degree $2$
Conductor $7350$
Sign $-1$
Analytic cond. $58.6900$
Root an. cond. $7.66094$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s + 6·11-s − 12-s + 13-s + 16-s − 3·17-s − 18-s + 4·19-s − 6·22-s − 3·23-s + 24-s − 26-s − 27-s + 3·29-s − 5·31-s − 32-s − 6·33-s + 3·34-s + 36-s − 10·37-s − 4·38-s − 39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 1.80·11-s − 0.288·12-s + 0.277·13-s + 1/4·16-s − 0.727·17-s − 0.235·18-s + 0.917·19-s − 1.27·22-s − 0.625·23-s + 0.204·24-s − 0.196·26-s − 0.192·27-s + 0.557·29-s − 0.898·31-s − 0.176·32-s − 1.04·33-s + 0.514·34-s + 1/6·36-s − 1.64·37-s − 0.648·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(58.6900\)
Root analytic conductor: \(7.66094\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7350} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 - 6 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 + 11 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.37263273060991654912019813234, −6.92556572337480254175815999132, −6.30065647109739038184436103699, −5.66559186290473329887274695065, −4.72745561396030562536006364457, −3.89971919876543623954672187569, −3.19219348927209928583678847949, −1.83011036684442793222473404899, −1.27292265672960911169360393077, 0, 1.27292265672960911169360393077, 1.83011036684442793222473404899, 3.19219348927209928583678847949, 3.89971919876543623954672187569, 4.72745561396030562536006364457, 5.66559186290473329887274695065, 6.30065647109739038184436103699, 6.92556572337480254175815999132, 7.37263273060991654912019813234

Graph of the $Z$-function along the critical line