L(s) = 1 | + (−1.64 − 0.951i)2-s + (−0.866 + 0.5i)3-s + (0.811 + 1.40i)4-s + (−2.07 − 0.837i)5-s + 1.90·6-s + 0.719i·8-s + (0.499 − 0.866i)9-s + (2.61 + 3.35i)10-s + (−1 − 1.73i)11-s + (−1.40 − 0.811i)12-s − 6.42i·13-s + (2.21 − 0.311i)15-s + (2.30 − 3.99i)16-s + (−3.83 + 2.21i)17-s + (−1.64 + 0.951i)18-s + (−1.21 + 2.10i)19-s + ⋯ |
L(s) = 1 | + (−1.16 − 0.672i)2-s + (−0.499 + 0.288i)3-s + (0.405 + 0.702i)4-s + (−0.927 − 0.374i)5-s + 0.776·6-s + 0.254i·8-s + (0.166 − 0.288i)9-s + (0.828 + 1.06i)10-s + (−0.301 − 0.522i)11-s + (−0.405 − 0.234i)12-s − 1.78i·13-s + (0.571 − 0.0803i)15-s + (0.576 − 0.998i)16-s + (−0.930 + 0.537i)17-s + (−0.388 + 0.224i)18-s + (−0.278 + 0.482i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.488 - 0.872i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.488 - 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.146693 + 0.0859531i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.146693 + 0.0859531i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (2.07 + 0.837i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.64 + 0.951i)T + (1 + 1.73i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 6.42iT - 13T^{2} \) |
| 17 | \( 1 + (3.83 - 2.21i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.21 - 2.10i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.19 + 0.688i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 0.755T + 29T^{2} \) |
| 31 | \( 1 + (2.59 + 4.48i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.59 - 3.80i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 8.23T + 41T^{2} \) |
| 43 | \( 1 - 10.1iT - 43T^{2} \) |
| 47 | \( 1 + (-2.38 - 1.37i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-7.95 + 4.59i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.05 - 12.2i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.42 - 5.93i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.38 - 1.37i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + (1.36 - 0.785i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.42 - 4.20i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 11.6iT - 83T^{2} \) |
| 89 | \( 1 + (-2.31 + 4.00i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 11.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50951854128333525374281413595, −9.891793436942263432759451553863, −8.741758531487030270631925181277, −8.220438530785552672056623236754, −7.51717433755350592180641590878, −6.02985204912436685690122262977, −5.11781897673331644958054161310, −3.91117165030837797596986586224, −2.72397167590472067478437314646, −0.968926579001728051071307376238,
0.17798544785847505235991490465, 2.03140870983165599720888098168, 3.87217821571288034782005773224, 4.81075889294926496032227060473, 6.36096129574354636464979919120, 7.04495957558962106882241431651, 7.39679183682057566478851615966, 8.569213336815676057107102113970, 9.121912527564780364901321279571, 10.13656000043652073786373537330