L(s) = 1 | − 1.41·2-s − 3-s + 1.00·4-s + 5-s + 1.41·6-s + 9-s − 1.41·10-s − 1.00·12-s − 15-s − 0.999·16-s − 1.41·18-s − 1.41·19-s + 1.00·20-s + 1.41·23-s + 25-s − 27-s + 1.41·30-s + 1.41·31-s + 1.41·32-s + 1.00·36-s + 2.00·38-s + 45-s − 2.00·46-s + 0.999·48-s − 1.41·50-s + 1.41·53-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 3-s + 1.00·4-s + 5-s + 1.41·6-s + 9-s − 1.41·10-s − 1.00·12-s − 15-s − 0.999·16-s − 1.41·18-s − 1.41·19-s + 1.00·20-s + 1.41·23-s + 25-s − 27-s + 1.41·30-s + 1.41·31-s + 1.41·32-s + 1.00·36-s + 2.00·38-s + 45-s − 2.00·46-s + 0.999·48-s − 1.41·50-s + 1.41·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4221575161\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4221575161\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 1.41T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + 1.41T + T^{2} \) |
| 23 | \( 1 - 1.41T + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 1.41T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - 1.41T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.41T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48767679781548031122155624154, −9.816805548434013102121918236944, −9.032920328246445280370002573946, −8.220174536731727986824345885605, −6.97633822972332313412119909893, −6.50765901467596082400325519957, −5.39579545452888574929467137370, −4.41019616365952847647548395155, −2.36507033203502314396116263133, −1.11613813786054256982614528162,
1.11613813786054256982614528162, 2.36507033203502314396116263133, 4.41019616365952847647548395155, 5.39579545452888574929467137370, 6.50765901467596082400325519957, 6.97633822972332313412119909893, 8.220174536731727986824345885605, 9.032920328246445280370002573946, 9.816805548434013102121918236944, 10.48767679781548031122155624154