Properties

Label 2-735-1.1-c3-0-37
Degree $2$
Conductor $735$
Sign $-1$
Analytic cond. $43.3664$
Root an. cond. $6.58531$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.53·2-s − 3·3-s + 4.46·4-s − 5·5-s + 10.5·6-s + 12.4·8-s + 9·9-s + 17.6·10-s − 2.93·11-s − 13.4·12-s + 19.0·13-s + 15·15-s − 79.7·16-s − 122.·17-s − 31.7·18-s − 107.·19-s − 22.3·20-s + 10.3·22-s + 210.·23-s − 37.4·24-s + 25·25-s − 67.3·26-s − 27·27-s + 95.4·29-s − 52.9·30-s + 94.3·31-s + 181.·32-s + ⋯
L(s)  = 1  − 1.24·2-s − 0.577·3-s + 0.558·4-s − 0.447·5-s + 0.720·6-s + 0.551·8-s + 0.333·9-s + 0.558·10-s − 0.0805·11-s − 0.322·12-s + 0.406·13-s + 0.258·15-s − 1.24·16-s − 1.74·17-s − 0.416·18-s − 1.29·19-s − 0.249·20-s + 0.100·22-s + 1.90·23-s − 0.318·24-s + 0.200·25-s − 0.507·26-s − 0.192·27-s + 0.611·29-s − 0.322·30-s + 0.546·31-s + 1.00·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(43.3664\)
Root analytic conductor: \(6.58531\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 735,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 + 5T \)
7 \( 1 \)
good2 \( 1 + 3.53T + 8T^{2} \)
11 \( 1 + 2.93T + 1.33e3T^{2} \)
13 \( 1 - 19.0T + 2.19e3T^{2} \)
17 \( 1 + 122.T + 4.91e3T^{2} \)
19 \( 1 + 107.T + 6.85e3T^{2} \)
23 \( 1 - 210.T + 1.21e4T^{2} \)
29 \( 1 - 95.4T + 2.43e4T^{2} \)
31 \( 1 - 94.3T + 2.97e4T^{2} \)
37 \( 1 - 97.1T + 5.06e4T^{2} \)
41 \( 1 - 491.T + 6.89e4T^{2} \)
43 \( 1 + 43.0T + 7.95e4T^{2} \)
47 \( 1 + 473.T + 1.03e5T^{2} \)
53 \( 1 + 183.T + 1.48e5T^{2} \)
59 \( 1 - 760.T + 2.05e5T^{2} \)
61 \( 1 - 198.T + 2.26e5T^{2} \)
67 \( 1 + 309.T + 3.00e5T^{2} \)
71 \( 1 - 665.T + 3.57e5T^{2} \)
73 \( 1 + 621.T + 3.89e5T^{2} \)
79 \( 1 + 24.7T + 4.93e5T^{2} \)
83 \( 1 - 406.T + 5.71e5T^{2} \)
89 \( 1 + 261.T + 7.04e5T^{2} \)
97 \( 1 - 1.00e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.411982426372493529729514189457, −8.745001715394745214491684725138, −8.065227875334943420692308503853, −6.95963816708906646539237970173, −6.43239991955889644454996613334, −4.89056365480134540174576408687, −4.18131232564101398669639312479, −2.45221579180846618649857924098, −1.05497619576561492344049950820, 0, 1.05497619576561492344049950820, 2.45221579180846618649857924098, 4.18131232564101398669639312479, 4.89056365480134540174576408687, 6.43239991955889644454996613334, 6.95963816708906646539237970173, 8.065227875334943420692308503853, 8.745001715394745214491684725138, 9.411982426372493529729514189457

Graph of the $Z$-function along the critical line