Properties

Label 2-72e2-12.11-c1-0-13
Degree $2$
Conductor $5184$
Sign $-i$
Analytic cond. $41.3944$
Root an. cond. $6.43385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.46i·5-s + 3.46i·7-s + 3·11-s − 4·13-s + 1.73i·17-s − 1.73i·19-s − 6.99·25-s + 3.46i·29-s + 11.9·35-s − 2·37-s + 5.19i·41-s + 5.19i·43-s − 12·47-s − 4.99·49-s − 10.3i·55-s + ⋯
L(s)  = 1  − 1.54i·5-s + 1.30i·7-s + 0.904·11-s − 1.10·13-s + 0.420i·17-s − 0.397i·19-s − 1.39·25-s + 0.643i·29-s + 2.02·35-s − 0.328·37-s + 0.811i·41-s + 0.792i·43-s − 1.75·47-s − 0.714·49-s − 1.40i·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5184\)    =    \(2^{6} \cdot 3^{4}\)
Sign: $-i$
Analytic conductor: \(41.3944\)
Root analytic conductor: \(6.43385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5184} (5183, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5184,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.048677897\)
\(L(\frac12)\) \(\approx\) \(1.048677897\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 3.46iT - 5T^{2} \)
7 \( 1 - 3.46iT - 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
17 \( 1 - 1.73iT - 17T^{2} \)
19 \( 1 + 1.73iT - 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 3.46iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 - 5.19iT - 41T^{2} \)
43 \( 1 - 5.19iT - 43T^{2} \)
47 \( 1 + 12T + 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 - 15T + 59T^{2} \)
61 \( 1 + 8T + 61T^{2} \)
67 \( 1 - 8.66iT - 67T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 + 11T + 73T^{2} \)
79 \( 1 + 3.46iT - 79T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 - 13.8iT - 89T^{2} \)
97 \( 1 - 13T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.544146853427248120847010298072, −7.909104865861819619266446913079, −6.89657598497463148020203748383, −6.12117267776560531834819161570, −5.31104750084759759343467302559, −4.88696217949445653420382019763, −4.12315867435088967987816226232, −2.98857828378875688367914182606, −2.00511844363563346756604057847, −1.15861876444581768248821836592, 0.28535962022084670434016196853, 1.72530005874072464053233690917, 2.71389588890699530735884162776, 3.54946211292844372993121295468, 4.10920124358460771793855052000, 5.04639152747543618677694527593, 6.13131401129052213773272265564, 6.77458589464817829041759209172, 7.25341786170802775526048816972, 7.67585769261164859954415447825

Graph of the $Z$-function along the critical line