# Properties

 Label 2-72e2-1.1-c1-0-82 Degree $2$ Conductor $5184$ Sign $-1$ Analytic cond. $41.3944$ Root an. cond. $6.43385$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual yes Analytic rank $1$

# Learn more

## Dirichlet series

 L(s)  = 1 + 5-s + 1.44·7-s − 3.44·11-s + 3.89·13-s − 4.89·17-s + 4·19-s + 0.550·23-s − 4·25-s − 9.89·29-s − 7.44·31-s + 1.44·35-s − 8.89·37-s − 2.10·41-s + 12.3·43-s − 8.34·47-s − 4.89·49-s + 0.898·53-s − 3.44·55-s − 0.348·59-s − 1.89·61-s + 3.89·65-s − 2.34·67-s + 11.7·71-s + 4.89·73-s − 5·77-s − 8.55·79-s − 5.44·83-s + ⋯
 L(s)  = 1 + 0.447·5-s + 0.547·7-s − 1.04·11-s + 1.08·13-s − 1.18·17-s + 0.917·19-s + 0.114·23-s − 0.800·25-s − 1.83·29-s − 1.33·31-s + 0.245·35-s − 1.46·37-s − 0.328·41-s + 1.88·43-s − 1.21·47-s − 0.699·49-s + 0.123·53-s − 0.465·55-s − 0.0453·59-s − 0.243·61-s + 0.483·65-s − 0.286·67-s + 1.40·71-s + 0.573·73-s − 0.569·77-s − 0.962·79-s − 0.598·83-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$5184$$    =    $$2^{6} \cdot 3^{4}$$ Sign: $-1$ Analytic conductor: $$41.3944$$ Root analytic conductor: $$6.43385$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{5184} (1, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$1$$ Selberg data: $$(2,\ 5184,\ (\ :1/2),\ -1)$$

## Particular Values

 $$L(1)$$ $$=$$ $$0$$ $$L(\frac12)$$ $$=$$ $$0$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1$$
good5 $$1 - T + 5T^{2}$$
7 $$1 - 1.44T + 7T^{2}$$
11 $$1 + 3.44T + 11T^{2}$$
13 $$1 - 3.89T + 13T^{2}$$
17 $$1 + 4.89T + 17T^{2}$$
19 $$1 - 4T + 19T^{2}$$
23 $$1 - 0.550T + 23T^{2}$$
29 $$1 + 9.89T + 29T^{2}$$
31 $$1 + 7.44T + 31T^{2}$$
37 $$1 + 8.89T + 37T^{2}$$
41 $$1 + 2.10T + 41T^{2}$$
43 $$1 - 12.3T + 43T^{2}$$
47 $$1 + 8.34T + 47T^{2}$$
53 $$1 - 0.898T + 53T^{2}$$
59 $$1 + 0.348T + 59T^{2}$$
61 $$1 + 1.89T + 61T^{2}$$
67 $$1 + 2.34T + 67T^{2}$$
71 $$1 - 11.7T + 71T^{2}$$
73 $$1 - 4.89T + 73T^{2}$$
79 $$1 + 8.55T + 79T^{2}$$
83 $$1 + 5.44T + 83T^{2}$$
89 $$1 + 3.10T + 89T^{2}$$
97 $$1 - 5.89T + 97T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−7.78436193517376983201459774363, −7.27923038079325371447400723094, −6.33912391178795998387378496816, −5.53697001282244069863384846668, −5.15662977841655354746233760525, −4.06851775590045600191449366931, −3.34283937151822409720561206128, −2.20163995669978844907221252175, −1.55713001825501504061890467504, 0, 1.55713001825501504061890467504, 2.20163995669978844907221252175, 3.34283937151822409720561206128, 4.06851775590045600191449366931, 5.15662977841655354746233760525, 5.53697001282244069863384846668, 6.33912391178795998387378496816, 7.27923038079325371447400723094, 7.78436193517376983201459774363