| L(s) = 1 | + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s − 11-s + 12-s − 13-s − 14-s + 16-s − 21-s − 22-s − 23-s + 24-s + 25-s − 26-s − 27-s − 28-s + 31-s + 32-s − 33-s − 37-s − 39-s + 41-s − 42-s − 44-s + ⋯ |
| L(s) = 1 | + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s − 11-s + 12-s − 13-s − 14-s + 16-s − 21-s − 22-s − 23-s + 24-s + 25-s − 26-s − 27-s − 28-s + 31-s + 32-s − 33-s − 37-s − 39-s + 41-s − 42-s − 44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.954908197\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.954908197\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 + T \) |
| good | 3 | \( 1 - T + T^{2} \) |
| 5 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T + T^{2} \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 + T + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 - T + T^{2} \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( 1 - T + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 + T )^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46527913641510387932204173607, −9.921751530672757355761849152303, −8.827908766948804866543626957188, −7.84370019481874175559593267193, −7.13276197202409677581561729415, −6.08354013242749412833078377104, −5.13838333422398699067116549491, −3.98226442988681564534696240726, −2.92419447192281830191792925582, −2.40049192126004654968939139751,
2.40049192126004654968939139751, 2.92419447192281830191792925582, 3.98226442988681564534696240726, 5.13838333422398699067116549491, 6.08354013242749412833078377104, 7.13276197202409677581561729415, 7.84370019481874175559593267193, 8.827908766948804866543626957188, 9.921751530672757355761849152303, 10.46527913641510387932204173607