Properties

Label 2-725-5.4-c1-0-9
Degree $2$
Conductor $725$
Sign $-0.447 - 0.894i$
Analytic cond. $5.78915$
Root an. cond. $2.40606$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + 4-s + 2i·7-s + 3i·8-s + 3·9-s − 6·11-s + 2i·13-s − 2·14-s − 16-s + 2i·17-s + 3i·18-s + 2·19-s − 6i·22-s + 2i·23-s − 2·26-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.5·4-s + 0.755i·7-s + 1.06i·8-s + 9-s − 1.80·11-s + 0.554i·13-s − 0.534·14-s − 0.250·16-s + 0.485i·17-s + 0.707i·18-s + 0.458·19-s − 1.27i·22-s + 0.417i·23-s − 0.392·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(725\)    =    \(5^{2} \cdot 29\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(5.78915\)
Root analytic conductor: \(2.40606\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{725} (349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 725,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.880403 + 1.42452i\)
\(L(\frac12)\) \(\approx\) \(0.880403 + 1.42452i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - iT - 2T^{2} \)
3 \( 1 - 3T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 + 6T + 11T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 - 2iT - 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 - 2iT - 23T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 + 10iT - 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 - 12iT - 47T^{2} \)
53 \( 1 + 6iT - 53T^{2} \)
59 \( 1 - 8T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 + 2iT - 67T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 - 10T + 79T^{2} \)
83 \( 1 + 14iT - 83T^{2} \)
89 \( 1 + 18T + 89T^{2} \)
97 \( 1 + 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.67312196610127919462588598658, −9.833167495559740938355149837873, −8.790289877698730065584705724601, −7.77598778692835818643125792560, −7.37827757031045747278894894102, −6.22198069079057810508297735477, −5.49969097173598607800637660478, −4.56063402080358753068589588525, −2.92347578162155466803677423313, −1.91263034095113813180296094491, 0.862835805039292746039049720786, 2.34101009603683483821703918774, 3.29871767503832252663994663052, 4.46914927729868417741466153421, 5.51051609302843871070980223670, 6.87980060839074380493989575229, 7.40411307127876632890816351909, 8.276166332733417785109124347038, 9.776237915665878080063535621343, 10.34072067206267059604203245946

Graph of the $Z$-function along the critical line