Properties

Label 2-725-5.4-c1-0-23
Degree $2$
Conductor $725$
Sign $0.447 + 0.894i$
Analytic cond. $5.78915$
Root an. cond. $2.40606$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.414i·2-s − 2i·3-s + 1.82·4-s − 0.828·6-s + 4.82i·7-s − 1.58i·8-s − 9-s + 0.828·11-s − 3.65i·12-s − 2i·13-s + 1.99·14-s + 3·16-s − 2.82i·17-s + 0.414i·18-s + 4.82·19-s + ⋯
L(s)  = 1  − 0.292i·2-s − 1.15i·3-s + 0.914·4-s − 0.338·6-s + 1.82i·7-s − 0.560i·8-s − 0.333·9-s + 0.249·11-s − 1.05i·12-s − 0.554i·13-s + 0.534·14-s + 0.750·16-s − 0.685i·17-s + 0.0976i·18-s + 1.10·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(725\)    =    \(5^{2} \cdot 29\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(5.78915\)
Root analytic conductor: \(2.40606\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{725} (349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 725,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.71397 - 1.05929i\)
\(L(\frac12)\) \(\approx\) \(1.71397 - 1.05929i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 0.414iT - 2T^{2} \)
3 \( 1 + 2iT - 3T^{2} \)
7 \( 1 - 4.82iT - 7T^{2} \)
11 \( 1 - 0.828T + 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
17 \( 1 + 2.82iT - 17T^{2} \)
19 \( 1 - 4.82T + 19T^{2} \)
23 \( 1 + 3.17iT - 23T^{2} \)
31 \( 1 - 6.48T + 31T^{2} \)
37 \( 1 - 8.48iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 6iT - 43T^{2} \)
47 \( 1 - 11.6iT - 47T^{2} \)
53 \( 1 + 3.65iT - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 3.65T + 61T^{2} \)
67 \( 1 + 6.48iT - 67T^{2} \)
71 \( 1 + 15.3T + 71T^{2} \)
73 \( 1 - 8.48iT - 73T^{2} \)
79 \( 1 - 2.48T + 79T^{2} \)
83 \( 1 - 7.17iT - 83T^{2} \)
89 \( 1 - 7.65T + 89T^{2} \)
97 \( 1 - 12.4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28244089741735965100019592144, −9.398029793864618810230869853687, −8.352820598124405619205210920729, −7.62950753766764181203968107697, −6.64164854231641694923232928794, −6.06189807715776114358029512128, −5.06134966940389820443627324411, −3.06149903445071343546422001013, −2.42805915931343479592608498791, −1.28792416027748904210396706923, 1.45642858216634064691998303360, 3.32989835011336231261878133166, 4.03561866328231830489959466320, 4.99824140036229037522864058918, 6.21042033642033670886527893450, 7.17566378290352898151483951334, 7.67406687312108198054662755710, 8.962937722854574839775712180734, 10.10403320665227663558823477458, 10.30378047385673141809815861294

Graph of the $Z$-function along the critical line