L(s) = 1 | + 2.23·2-s + 3.00·4-s + (−2.23 − 2.23i)7-s + 2.23·8-s + 3·9-s + (4 − 4i)11-s + (4.47 + 4.47i)13-s + (−5.00 − 5.00i)14-s − 0.999·16-s − 4.47·17-s + 6.70·18-s + (2 + 2i)19-s + (8.94 − 8.94i)22-s + (2.23 − 2.23i)23-s + (10.0 + 10.0i)26-s + ⋯ |
L(s) = 1 | + 1.58·2-s + 1.50·4-s + (−0.845 − 0.845i)7-s + 0.790·8-s + 9-s + (1.20 − 1.20i)11-s + (1.24 + 1.24i)13-s + (−1.33 − 1.33i)14-s − 0.249·16-s − 1.08·17-s + 1.58·18-s + (0.458 + 0.458i)19-s + (1.90 − 1.90i)22-s + (0.466 − 0.466i)23-s + (1.96 + 1.96i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.934 + 0.355i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.934 + 0.355i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.59874 - 0.661037i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.59874 - 0.661037i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 29 | \( 1 + (2 + 5i)T \) |
good | 2 | \( 1 - 2.23T + 2T^{2} \) |
| 3 | \( 1 - 3T^{2} \) |
| 7 | \( 1 + (2.23 + 2.23i)T + 7iT^{2} \) |
| 11 | \( 1 + (-4 + 4i)T - 11iT^{2} \) |
| 13 | \( 1 + (-4.47 - 4.47i)T + 13iT^{2} \) |
| 17 | \( 1 + 4.47T + 17T^{2} \) |
| 19 | \( 1 + (-2 - 2i)T + 19iT^{2} \) |
| 23 | \( 1 + (-2.23 + 2.23i)T - 23iT^{2} \) |
| 31 | \( 1 + (4 - 4i)T - 31iT^{2} \) |
| 37 | \( 1 - 4.47iT - 37T^{2} \) |
| 41 | \( 1 + (-1 - i)T + 41iT^{2} \) |
| 43 | \( 1 - 4.47iT - 43T^{2} \) |
| 47 | \( 1 + 4.47iT - 47T^{2} \) |
| 53 | \( 1 + (8.94 - 8.94i)T - 53iT^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + (9 - 9i)T - 61iT^{2} \) |
| 67 | \( 1 + (2.23 - 2.23i)T - 67iT^{2} \) |
| 71 | \( 1 + 12iT - 71T^{2} \) |
| 73 | \( 1 + 4.47T + 73T^{2} \) |
| 79 | \( 1 + (-2 - 2i)T + 79iT^{2} \) |
| 83 | \( 1 + (6.70 - 6.70i)T - 83iT^{2} \) |
| 89 | \( 1 + (-7 - 7i)T + 89iT^{2} \) |
| 97 | \( 1 + 4.47iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76042422674138332150683148058, −9.477997937415862479166578419093, −8.771676933584255895763840582996, −7.19106774701321637461178132177, −6.45670073165580359800912194663, −6.11531943848649549094240119005, −4.50129014447432163138427666023, −3.95760664875555329702150104354, −3.26401193636293725225566517783, −1.45656544434698960730519338340,
1.84945081486006008176496898445, 3.20339209386446897602257084474, 3.96434248664853086030964984420, 4.93474394528426623314835201522, 5.91790464333501754952404888116, 6.63513986018119108592325641281, 7.36810030931368005630144869504, 9.000070354577974621711271143158, 9.489310946056067993443168997642, 10.75392731943724428366924823708