L(s) = 1 | − 2.23i·2-s − 3.00·4-s + (−2.23 + 2.23i)7-s + 2.23i·8-s − 3·9-s + (4 − 4i)11-s + (−4.47 + 4.47i)13-s + (5.00 + 5.00i)14-s − 0.999·16-s + 4.47i·17-s + 6.70i·18-s + (−2 − 2i)19-s + (−8.94 − 8.94i)22-s + (2.23 + 2.23i)23-s + (10.0 + 10.0i)26-s + ⋯ |
L(s) = 1 | − 1.58i·2-s − 1.50·4-s + (−0.845 + 0.845i)7-s + 0.790i·8-s − 9-s + (1.20 − 1.20i)11-s + (−1.24 + 1.24i)13-s + (1.33 + 1.33i)14-s − 0.249·16-s + 1.08i·17-s + 1.58i·18-s + (−0.458 − 0.458i)19-s + (−1.90 − 1.90i)22-s + (0.466 + 0.466i)23-s + (1.96 + 1.96i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.735 - 0.677i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.735 - 0.677i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.325142 + 0.126827i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.325142 + 0.126827i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 29 | \( 1 + (-2 - 5i)T \) |
good | 2 | \( 1 + 2.23iT - 2T^{2} \) |
| 3 | \( 1 + 3T^{2} \) |
| 7 | \( 1 + (2.23 - 2.23i)T - 7iT^{2} \) |
| 11 | \( 1 + (-4 + 4i)T - 11iT^{2} \) |
| 13 | \( 1 + (4.47 - 4.47i)T - 13iT^{2} \) |
| 17 | \( 1 - 4.47iT - 17T^{2} \) |
| 19 | \( 1 + (2 + 2i)T + 19iT^{2} \) |
| 23 | \( 1 + (-2.23 - 2.23i)T + 23iT^{2} \) |
| 31 | \( 1 + (4 - 4i)T - 31iT^{2} \) |
| 37 | \( 1 - 4.47T + 37T^{2} \) |
| 41 | \( 1 + (-1 - i)T + 41iT^{2} \) |
| 43 | \( 1 + 4.47T + 43T^{2} \) |
| 47 | \( 1 + 4.47T + 47T^{2} \) |
| 53 | \( 1 + (8.94 + 8.94i)T + 53iT^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + (9 - 9i)T - 61iT^{2} \) |
| 67 | \( 1 + (-2.23 - 2.23i)T + 67iT^{2} \) |
| 71 | \( 1 + 12iT - 71T^{2} \) |
| 73 | \( 1 + 4.47iT - 73T^{2} \) |
| 79 | \( 1 + (2 + 2i)T + 79iT^{2} \) |
| 83 | \( 1 + (6.70 + 6.70i)T + 83iT^{2} \) |
| 89 | \( 1 + (7 + 7i)T + 89iT^{2} \) |
| 97 | \( 1 + 4.47T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74787496649665684930596115633, −9.575607560616617672646146461736, −9.081610485141186498899796640884, −8.556437422848716090148298105365, −6.77370353448409847282737049181, −6.03635344056750740421106512846, −4.75549265831160926968764724472, −3.52895563092999420150973342314, −2.88885835173010484546137915022, −1.69515584243645869724782583054,
0.17321245809921928363541193332, 2.73983846242147603543495171411, 4.18362870055294490420144220124, 5.06820405621799394898790781356, 6.08766534998906983357659954491, 6.85405300086161632701155170251, 7.47765071589904209981988582375, 8.263756627496740894269724211417, 9.521009271522100879532494322157, 9.730467388430761234567699092777