Properties

Label 2-725-1.1-c1-0-9
Degree $2$
Conductor $725$
Sign $1$
Analytic cond. $5.78915$
Root an. cond. $2.40606$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·2-s − 2.52·3-s + 0.999·4-s − 4.37·6-s − 1.58·7-s − 1.73·8-s + 3.37·9-s + 6.37·11-s − 2.52·12-s + 0.939·13-s − 2.74·14-s − 5·16-s + 5.04·17-s + 5.84·18-s + 4·19-s + 4·21-s + 11.0·22-s + 3.46·23-s + 4.37·24-s + 1.62·26-s − 0.939·27-s − 1.58·28-s − 29-s + 2.37·31-s − 5.19·32-s − 16.0·33-s + 8.74·34-s + ⋯
L(s)  = 1  + 1.22·2-s − 1.45·3-s + 0.499·4-s − 1.78·6-s − 0.598·7-s − 0.612·8-s + 1.12·9-s + 1.92·11-s − 0.728·12-s + 0.260·13-s − 0.733·14-s − 1.25·16-s + 1.22·17-s + 1.37·18-s + 0.917·19-s + 0.872·21-s + 2.35·22-s + 0.722·23-s + 0.892·24-s + 0.319·26-s − 0.180·27-s − 0.299·28-s − 0.185·29-s + 0.426·31-s − 0.918·32-s − 2.80·33-s + 1.49·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(725\)    =    \(5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(5.78915\)
Root analytic conductor: \(2.40606\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.685423092\)
\(L(\frac12)\) \(\approx\) \(1.685423092\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 - 1.73T + 2T^{2} \)
3 \( 1 + 2.52T + 3T^{2} \)
7 \( 1 + 1.58T + 7T^{2} \)
11 \( 1 - 6.37T + 11T^{2} \)
13 \( 1 - 0.939T + 13T^{2} \)
17 \( 1 - 5.04T + 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 3.46T + 23T^{2} \)
31 \( 1 - 2.37T + 31T^{2} \)
37 \( 1 + 10.0T + 37T^{2} \)
41 \( 1 - 6.74T + 41T^{2} \)
43 \( 1 - 5.69T + 43T^{2} \)
47 \( 1 - 5.69T + 47T^{2} \)
53 \( 1 - 0.939T + 53T^{2} \)
59 \( 1 - 0.744T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 8.51T + 67T^{2} \)
71 \( 1 + 4.74T + 71T^{2} \)
73 \( 1 + 6.92T + 73T^{2} \)
79 \( 1 - 5.62T + 79T^{2} \)
83 \( 1 - 16.7T + 83T^{2} \)
89 \( 1 - 10.7T + 89T^{2} \)
97 \( 1 + 6.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72799874585684734327714897320, −9.634302968314208591886929898347, −8.942356707862954681768977018782, −7.22084336413811525146972161696, −6.44427976919527264043786368559, −5.84726771721344651112631139962, −5.10191221180345160267606468974, −4.05840635262312553796066659356, −3.25503110037288496639848261214, −1.03980805065612102299840916477, 1.03980805065612102299840916477, 3.25503110037288496639848261214, 4.05840635262312553796066659356, 5.10191221180345160267606468974, 5.84726771721344651112631139962, 6.44427976919527264043786368559, 7.22084336413811525146972161696, 8.942356707862954681768977018782, 9.634302968314208591886929898347, 10.72799874585684734327714897320

Graph of the $Z$-function along the critical line