Properties

Label 2-722-361.144-c1-0-26
Degree $2$
Conductor $722$
Sign $-0.308 + 0.951i$
Analytic cond. $5.76519$
Root an. cond. $2.40108$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.851 − 0.523i)2-s + (0.0903 − 0.241i)3-s + (0.451 − 0.892i)4-s + (−1.19 − 1.62i)5-s + (−0.0493 − 0.252i)6-s + (1.15 − 1.76i)7-s + (−0.0825 − 0.996i)8-s + (2.21 + 1.92i)9-s + (−1.86 − 0.759i)10-s + (0.499 + 0.171i)11-s + (−0.174 − 0.189i)12-s + (−1.18 − 1.44i)13-s + (0.0579 − 2.10i)14-s + (−0.500 + 0.141i)15-s + (−0.592 − 0.805i)16-s + (−2.08 − 4.12i)17-s + ⋯
L(s)  = 1  + (0.602 − 0.370i)2-s + (0.0521 − 0.139i)3-s + (0.225 − 0.446i)4-s + (−0.534 − 0.727i)5-s + (−0.0201 − 0.103i)6-s + (0.434 − 0.665i)7-s + (−0.0291 − 0.352i)8-s + (0.737 + 0.642i)9-s + (−0.591 − 0.240i)10-s + (0.150 + 0.0517i)11-s + (−0.0503 − 0.0547i)12-s + (−0.330 − 0.400i)13-s + (0.0154 − 0.561i)14-s + (−0.129 + 0.0365i)15-s + (−0.148 − 0.201i)16-s + (−0.506 − 1.00i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.308 + 0.951i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $-0.308 + 0.951i$
Analytic conductor: \(5.76519\)
Root analytic conductor: \(2.40108\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{722} (505, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :1/2),\ -0.308 + 0.951i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.19284 - 1.64012i\)
\(L(\frac12)\) \(\approx\) \(1.19284 - 1.64012i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.851 + 0.523i)T \)
19 \( 1 + (-3.40 - 2.72i)T \)
good3 \( 1 + (-0.0903 + 0.241i)T + (-2.26 - 1.97i)T^{2} \)
5 \( 1 + (1.19 + 1.62i)T + (-1.49 + 4.77i)T^{2} \)
7 \( 1 + (-1.15 + 1.76i)T + (-2.81 - 6.41i)T^{2} \)
11 \( 1 + (-0.499 - 0.171i)T + (8.68 + 6.75i)T^{2} \)
13 \( 1 + (1.18 + 1.44i)T + (-2.49 + 12.7i)T^{2} \)
17 \( 1 + (2.08 + 4.12i)T + (-10.0 + 13.6i)T^{2} \)
23 \( 1 + (2.63 + 7.04i)T + (-17.3 + 15.1i)T^{2} \)
29 \( 1 + (1.03 + 0.0568i)T + (28.8 + 3.19i)T^{2} \)
31 \( 1 + (7.62 - 4.12i)T + (16.9 - 25.9i)T^{2} \)
37 \( 1 + (-2.09 - 0.720i)T + (29.1 + 22.7i)T^{2} \)
41 \( 1 + (-4.91 - 4.78i)T + (1.12 + 40.9i)T^{2} \)
43 \( 1 + (0.326 - 0.132i)T + (30.8 - 29.9i)T^{2} \)
47 \( 1 + (1.18 + 6.07i)T + (-43.5 + 17.6i)T^{2} \)
53 \( 1 + (1.16 + 5.96i)T + (-49.1 + 19.9i)T^{2} \)
59 \( 1 + (-5.71 - 5.55i)T + (1.62 + 58.9i)T^{2} \)
61 \( 1 + (4.51 - 2.12i)T + (38.7 - 47.0i)T^{2} \)
67 \( 1 + (-7.78 + 5.40i)T + (23.4 - 62.7i)T^{2} \)
71 \( 1 + (-11.3 - 5.33i)T + (45.1 + 54.8i)T^{2} \)
73 \( 1 + (-2.81 - 5.56i)T + (-43.2 + 58.8i)T^{2} \)
79 \( 1 + (-8.18 + 3.32i)T + (56.6 - 55.0i)T^{2} \)
83 \( 1 + (-2.22 - 5.07i)T + (-56.2 + 61.0i)T^{2} \)
89 \( 1 + (1.30 - 2.58i)T + (-52.7 - 71.7i)T^{2} \)
97 \( 1 + (1.61 + 1.11i)T + (34.0 + 90.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33167248455538670660757370550, −9.445420092788060742779489353621, −8.259947641691163499614204739704, −7.55481078736955459657245412342, −6.70312457033178490746678468641, −5.23782981120213684972685161816, −4.62760843940578768158962835452, −3.80288583979551459292204956472, −2.29592946164817947625023461424, −0.910061200960857433318841061133, 1.98219488091610857064685891283, 3.42120261993230933256258195380, 4.10599580076842754017122594926, 5.29341321252388929297990456161, 6.23901878171375588047805278961, 7.20138194532760156351793532335, 7.74570538615703793349716363011, 8.998528851173959254840055885839, 9.657318144163174938784943715236, 11.00486737398178669631498600908

Graph of the $Z$-function along the critical line