Properties

Label 2-722-361.138-c1-0-3
Degree $2$
Conductor $722$
Sign $-0.805 - 0.593i$
Analytic cond. $5.76519$
Root an. cond. $2.40108$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.870 + 0.492i)2-s + (2.46 + 2.30i)3-s + (0.515 − 0.856i)4-s + (−2.32 − 0.0854i)5-s + (−3.27 − 0.798i)6-s + (−0.439 − 2.24i)7-s + (−0.0275 + 0.999i)8-s + (0.539 + 8.37i)9-s + (2.06 − 1.06i)10-s + (3.75 + 5.10i)11-s + (3.24 − 0.918i)12-s + (0.512 + 0.219i)13-s + (1.48 + 1.74i)14-s + (−5.52 − 5.57i)15-s + (−0.467 − 0.883i)16-s + (−4.50 + 0.0827i)17-s + ⋯
L(s)  = 1  + (−0.615 + 0.347i)2-s + (1.42 + 1.33i)3-s + (0.257 − 0.428i)4-s + (−1.03 − 0.0382i)5-s + (−1.33 − 0.326i)6-s + (−0.166 − 0.850i)7-s + (−0.00974 + 0.353i)8-s + (0.179 + 2.79i)9-s + (0.653 − 0.338i)10-s + (1.13 + 1.53i)11-s + (0.937 − 0.265i)12-s + (0.142 + 0.0608i)13-s + (0.397 + 0.465i)14-s + (−1.42 − 1.43i)15-s + (−0.116 − 0.220i)16-s + (−1.09 + 0.0200i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.805 - 0.593i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.805 - 0.593i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $-0.805 - 0.593i$
Analytic conductor: \(5.76519\)
Root analytic conductor: \(2.40108\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{722} (499, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :1/2),\ -0.805 - 0.593i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.436211 + 1.32741i\)
\(L(\frac12)\) \(\approx\) \(0.436211 + 1.32741i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.870 - 0.492i)T \)
19 \( 1 + (-4.09 - 1.50i)T \)
good3 \( 1 + (-2.46 - 2.30i)T + (0.192 + 2.99i)T^{2} \)
5 \( 1 + (2.32 + 0.0854i)T + (4.98 + 0.367i)T^{2} \)
7 \( 1 + (0.439 + 2.24i)T + (-6.48 + 2.63i)T^{2} \)
11 \( 1 + (-3.75 - 5.10i)T + (-3.28 + 10.4i)T^{2} \)
13 \( 1 + (-0.512 - 0.219i)T + (8.97 + 9.40i)T^{2} \)
17 \( 1 + (4.50 - 0.0827i)T + (16.9 - 0.624i)T^{2} \)
23 \( 1 + (3.21 + 0.972i)T + (19.1 + 12.7i)T^{2} \)
29 \( 1 + (-3.30 - 2.66i)T + (6.08 + 28.3i)T^{2} \)
31 \( 1 + (0.957 + 2.55i)T + (-23.3 + 20.3i)T^{2} \)
37 \( 1 + (4.68 - 10.6i)T + (-25.0 - 27.2i)T^{2} \)
41 \( 1 + (5.56 + 0.512i)T + (40.3 + 7.49i)T^{2} \)
43 \( 1 + (0.511 + 11.1i)T + (-42.8 + 3.94i)T^{2} \)
47 \( 1 + (-0.720 + 0.754i)T + (-2.15 - 46.9i)T^{2} \)
53 \( 1 + (-1.47 - 5.04i)T + (-44.6 + 28.5i)T^{2} \)
59 \( 1 + (-0.846 - 1.83i)T + (-38.3 + 44.8i)T^{2} \)
61 \( 1 + (-9.34 + 1.91i)T + (56.0 - 23.9i)T^{2} \)
67 \( 1 + (-6.33 + 0.937i)T + (64.1 - 19.4i)T^{2} \)
71 \( 1 + (-2.23 - 0.458i)T + (65.2 + 27.9i)T^{2} \)
73 \( 1 + (-0.604 + 1.09i)T + (-38.7 - 61.8i)T^{2} \)
79 \( 1 + (0.524 - 0.336i)T + (33.0 - 71.7i)T^{2} \)
83 \( 1 + (-0.531 + 3.83i)T + (-79.8 - 22.5i)T^{2} \)
89 \( 1 + (-5.22 - 9.44i)T + (-47.3 + 75.3i)T^{2} \)
97 \( 1 + (1.22 + 0.182i)T + (92.8 + 28.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16708068737575167012288930277, −9.956707893089622000993721012918, −8.957201620016834571226521012999, −8.374923291601685049636549472105, −7.45352835185515115638299547589, −6.89055058340990021251335959971, −4.88872841111000773000316818660, −4.14156773735076318913863896321, −3.53852677328416100139940741037, −1.96425316196458162742809629114, 0.76327219865020930964218531639, 2.14459538056942022900539385672, 3.22996497053693173517623308701, 3.81349487298106678026727756182, 6.07768220997548838942857695580, 6.85804588990154080021602366584, 7.72437004040637100695212713810, 8.545494870471720900891529678367, 8.794121707870999299381704011819, 9.607310652455295728641460123625

Graph of the $Z$-function along the critical line