# Properties

 Label 2-722-19.6-c1-0-7 Degree $2$ Conductor $722$ Sign $0.713 - 0.700i$ Analytic cond. $5.76519$ Root an. cond. $2.40108$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Learn more

## Dirichlet series

 L(s)  = 1 + (−0.766 + 0.642i)2-s + (−0.939 − 0.342i)3-s + (0.173 − 0.984i)4-s + (0.939 − 0.342i)6-s + (0.5 − 0.866i)7-s + (0.500 + 0.866i)8-s + (−1.53 − 1.28i)9-s + (3 + 5.19i)11-s + (−0.499 + 0.866i)12-s + (−4.69 + 1.71i)13-s + (0.173 + 0.984i)14-s + (−0.939 − 0.342i)16-s + (2.29 − 1.92i)17-s + 2·18-s + (−0.766 + 0.642i)21-s + (−5.63 − 2.05i)22-s + ⋯
 L(s)  = 1 + (−0.541 + 0.454i)2-s + (−0.542 − 0.197i)3-s + (0.0868 − 0.492i)4-s + (0.383 − 0.139i)6-s + (0.188 − 0.327i)7-s + (0.176 + 0.306i)8-s + (−0.510 − 0.428i)9-s + (0.904 + 1.56i)11-s + (−0.144 + 0.250i)12-s + (−1.30 + 0.474i)13-s + (0.0464 + 0.263i)14-s + (−0.234 − 0.0855i)16-s + (0.557 − 0.467i)17-s + 0.471·18-s + (−0.167 + 0.140i)21-s + (−1.20 − 0.437i)22-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.713 - 0.700i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.713 - 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$722$$    =    $$2 \cdot 19^{2}$$ Sign: $0.713 - 0.700i$ Analytic conductor: $$5.76519$$ Root analytic conductor: $$2.40108$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{722} (595, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 722,\ (\ :1/2),\ 0.713 - 0.700i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.823912 + 0.336786i$$ $$L(\frac12)$$ $$\approx$$ $$0.823912 + 0.336786i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (0.766 - 0.642i)T$$
19 $$1$$
good3 $$1 + (0.939 + 0.342i)T + (2.29 + 1.92i)T^{2}$$
5 $$1 + (-4.69 + 1.71i)T^{2}$$
7 $$1 + (-0.5 + 0.866i)T + (-3.5 - 6.06i)T^{2}$$
11 $$1 + (-3 - 5.19i)T + (-5.5 + 9.52i)T^{2}$$
13 $$1 + (4.69 - 1.71i)T + (9.95 - 8.35i)T^{2}$$
17 $$1 + (-2.29 + 1.92i)T + (2.95 - 16.7i)T^{2}$$
23 $$1 + (-0.520 + 2.95i)T + (-21.6 - 7.86i)T^{2}$$
29 $$1 + (-6.89 - 5.78i)T + (5.03 + 28.5i)T^{2}$$
31 $$1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2}$$
37 $$1 - 2T + 37T^{2}$$
41 $$1 + (31.4 + 26.3i)T^{2}$$
43 $$1 + (-1.38 - 7.87i)T + (-40.4 + 14.7i)T^{2}$$
47 $$1 + (8.16 + 46.2i)T^{2}$$
53 $$1 + (0.520 - 2.95i)T + (-49.8 - 18.1i)T^{2}$$
59 $$1 + (-6.89 + 5.78i)T + (10.2 - 58.1i)T^{2}$$
61 $$1 + (1.73 - 9.84i)T + (-57.3 - 20.8i)T^{2}$$
67 $$1 + (-3.83 - 3.21i)T + (11.6 + 65.9i)T^{2}$$
71 $$1 + (1.04 + 5.90i)T + (-66.7 + 24.2i)T^{2}$$
73 $$1 + (-6.57 - 2.39i)T + (55.9 + 46.9i)T^{2}$$
79 $$1 + (-9.39 - 3.42i)T + (60.5 + 50.7i)T^{2}$$
83 $$1 + (-3 + 5.19i)T + (-41.5 - 71.8i)T^{2}$$
89 $$1 + (-11.2 + 4.10i)T + (68.1 - 57.2i)T^{2}$$
97 $$1 + (7.66 - 6.42i)T + (16.8 - 95.5i)T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−10.32471671956361464494070609262, −9.605264032982960762349398425599, −8.922924186678944890479747329409, −7.73229473201446854601812596115, −6.91448431750206548763216769880, −6.46116076186513131800371845171, −5.08690080424406260279723076106, −4.42820155366933605898206969031, −2.60994540278981947906347185091, −1.05798373296979343332913414203, 0.76654460221100648959069070568, 2.51046720756697611570296529813, 3.54176391018470446930257296287, 4.95952966688914636675416574951, 5.76256742501649678668128197245, 6.77250980085303357205236841764, 8.040047921444580013609331157888, 8.553823103621976347840663416240, 9.537742758530019945787524772543, 10.42764812410789024455652544666