L(s) = 1 | + (0.766 + 0.642i)2-s + (0.939 − 0.342i)3-s + (0.173 + 0.984i)4-s + (0.939 + 0.342i)6-s + (0.5 + 0.866i)7-s + (−0.500 + 0.866i)8-s + (−1.53 + 1.28i)9-s + (3 − 5.19i)11-s + (0.499 + 0.866i)12-s + (4.69 + 1.71i)13-s + (−0.173 + 0.984i)14-s + (−0.939 + 0.342i)16-s + (2.29 + 1.92i)17-s − 2·18-s + (0.766 + 0.642i)21-s + (5.63 − 2.05i)22-s + ⋯ |
L(s) = 1 | + (0.541 + 0.454i)2-s + (0.542 − 0.197i)3-s + (0.0868 + 0.492i)4-s + (0.383 + 0.139i)6-s + (0.188 + 0.327i)7-s + (−0.176 + 0.306i)8-s + (−0.510 + 0.428i)9-s + (0.904 − 1.56i)11-s + (0.144 + 0.250i)12-s + (1.30 + 0.474i)13-s + (−0.0464 + 0.263i)14-s + (−0.234 + 0.0855i)16-s + (0.557 + 0.467i)17-s − 0.471·18-s + (0.167 + 0.140i)21-s + (1.20 − 0.437i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.692 - 0.721i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.692 - 0.721i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.35771 + 1.00570i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.35771 + 1.00570i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.766 - 0.642i)T \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.939 + 0.342i)T + (2.29 - 1.92i)T^{2} \) |
| 5 | \( 1 + (-4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 + 5.19i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.69 - 1.71i)T + (9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (-2.29 - 1.92i)T + (2.95 + 16.7i)T^{2} \) |
| 23 | \( 1 + (-0.520 - 2.95i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (6.89 - 5.78i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (-1.38 + 7.87i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + (-0.520 - 2.95i)T + (-49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (6.89 + 5.78i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (1.73 + 9.84i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (3.83 - 3.21i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-1.04 + 5.90i)T + (-66.7 - 24.2i)T^{2} \) |
| 73 | \( 1 + (-6.57 + 2.39i)T + (55.9 - 46.9i)T^{2} \) |
| 79 | \( 1 + (9.39 - 3.42i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-3 - 5.19i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (11.2 + 4.10i)T + (68.1 + 57.2i)T^{2} \) |
| 97 | \( 1 + (-7.66 - 6.42i)T + (16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02030769698767977106289062594, −9.152139928531293859659410642776, −8.737708021451125369054613482876, −8.030956516790073268174276674711, −6.95248166317181133914816960102, −5.92919135477686423445285166829, −5.38940808284644924323253182810, −3.76368272517226243596758619668, −3.25043477833002597993343221795, −1.62761660157931603573099112697,
1.30911764998984673611734410859, 2.72730879810629324886427028574, 3.77875520861388078911615037336, 4.50349514610211168859969136946, 5.75737480159091690591088744348, 6.68413789410578776063457225762, 7.69700103541705228152731687514, 8.811764649754775872865697374151, 9.462223308103296050125455098668, 10.32333291336015939056876217026