Properties

Label 2-7200-5.4-c1-0-0
Degree $2$
Conductor $7200$
Sign $-0.447 - 0.894i$
Analytic cond. $57.4922$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.47i·7-s + 2.23·11-s − 4i·13-s + 7i·17-s − 6.70·19-s + 4.47i·23-s − 4.47·31-s + 2i·37-s − 5·41-s − 8.94i·47-s − 13.0·49-s + 6i·53-s − 8.94·59-s + 10·61-s + 2.23i·67-s + ⋯
L(s)  = 1  − 1.69i·7-s + 0.674·11-s − 1.10i·13-s + 1.69i·17-s − 1.53·19-s + 0.932i·23-s − 0.803·31-s + 0.328i·37-s − 0.780·41-s − 1.30i·47-s − 1.85·49-s + 0.824i·53-s − 1.16·59-s + 1.28·61-s + 0.273i·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7200\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(57.4922\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7200} (6049, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7200,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3628778188\)
\(L(\frac12)\) \(\approx\) \(0.3628778188\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4.47iT - 7T^{2} \)
11 \( 1 - 2.23T + 11T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
17 \( 1 - 7iT - 17T^{2} \)
19 \( 1 + 6.70T + 19T^{2} \)
23 \( 1 - 4.47iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + 4.47T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 + 5T + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 8.94iT - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 + 8.94T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 - 2.23iT - 67T^{2} \)
71 \( 1 + 8.94T + 71T^{2} \)
73 \( 1 - 9iT - 73T^{2} \)
79 \( 1 + 4.47T + 79T^{2} \)
83 \( 1 - 11.1iT - 83T^{2} \)
89 \( 1 + 5T + 89T^{2} \)
97 \( 1 - 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.218946334767808228781761993054, −7.38329862642750107222873394945, −6.83482619873525008560630719974, −6.13322385702079983348323347613, −5.39784149886645335350533202719, −4.29865035123383011571593854429, −3.91440677537429529658819380054, −3.26124728183219900421952942671, −1.88520164164897844474793435139, −1.12130258632548584779506121241, 0.087654335613115036668467431522, 1.73422867820027683031652218276, 2.35704000147278000255294995888, 3.12631947315584158575051198782, 4.26128975382218267191807533246, 4.82164592941250853059079769600, 5.62747969889125923047843306666, 6.41068282770455354292595442098, 6.77101676489293650989197286308, 7.73142486912905488025804860605

Graph of the $Z$-function along the critical line