L(s) = 1 | − 4.47i·7-s + 2.23·11-s − 4i·13-s + 7i·17-s − 6.70·19-s + 4.47i·23-s − 4.47·31-s + 2i·37-s − 5·41-s − 8.94i·47-s − 13.0·49-s + 6i·53-s − 8.94·59-s + 10·61-s + 2.23i·67-s + ⋯ |
L(s) = 1 | − 1.69i·7-s + 0.674·11-s − 1.10i·13-s + 1.69i·17-s − 1.53·19-s + 0.932i·23-s − 0.803·31-s + 0.328i·37-s − 0.780·41-s − 1.30i·47-s − 1.85·49-s + 0.824i·53-s − 1.16·59-s + 1.28·61-s + 0.273i·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3628778188\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3628778188\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 4.47iT - 7T^{2} \) |
| 11 | \( 1 - 2.23T + 11T^{2} \) |
| 13 | \( 1 + 4iT - 13T^{2} \) |
| 17 | \( 1 - 7iT - 17T^{2} \) |
| 19 | \( 1 + 6.70T + 19T^{2} \) |
| 23 | \( 1 - 4.47iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 4.47T + 31T^{2} \) |
| 37 | \( 1 - 2iT - 37T^{2} \) |
| 41 | \( 1 + 5T + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 8.94iT - 47T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 + 8.94T + 59T^{2} \) |
| 61 | \( 1 - 10T + 61T^{2} \) |
| 67 | \( 1 - 2.23iT - 67T^{2} \) |
| 71 | \( 1 + 8.94T + 71T^{2} \) |
| 73 | \( 1 - 9iT - 73T^{2} \) |
| 79 | \( 1 + 4.47T + 79T^{2} \) |
| 83 | \( 1 - 11.1iT - 83T^{2} \) |
| 89 | \( 1 + 5T + 89T^{2} \) |
| 97 | \( 1 - 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.218946334767808228781761993054, −7.38329862642750107222873394945, −6.83482619873525008560630719974, −6.13322385702079983348323347613, −5.39784149886645335350533202719, −4.29865035123383011571593854429, −3.91440677537429529658819380054, −3.26124728183219900421952942671, −1.88520164164897844474793435139, −1.12130258632548584779506121241,
0.087654335613115036668467431522, 1.73422867820027683031652218276, 2.35704000147278000255294995888, 3.12631947315584158575051198782, 4.26128975382218267191807533246, 4.82164592941250853059079769600, 5.62747969889125923047843306666, 6.41068282770455354292595442098, 6.77101676489293650989197286308, 7.73142486912905488025804860605