L(s) = 1 | + (−1.62 + 0.606i)3-s + (−0.5 + 0.866i)5-s + (−2.62 − 4.54i)7-s + (2.26 − 1.96i)9-s + (1.33 + 2.31i)11-s + (−1.90 + 3.30i)13-s + (0.285 − 1.70i)15-s + 3.52·17-s + 4.67·19-s + (7.00 + 5.77i)21-s + (−2.47 + 4.29i)23-s + (−0.499 − 0.866i)25-s + (−2.48 + 4.56i)27-s + (0.928 + 1.60i)29-s + (−4.33 + 7.51i)31-s + ⋯ |
L(s) = 1 | + (−0.936 + 0.350i)3-s + (−0.223 + 0.387i)5-s + (−0.991 − 1.71i)7-s + (0.754 − 0.655i)9-s + (0.402 + 0.697i)11-s + (−0.529 + 0.916i)13-s + (0.0738 − 0.441i)15-s + 0.855·17-s + 1.07·19-s + (1.52 + 1.26i)21-s + (−0.516 + 0.895i)23-s + (−0.0999 − 0.173i)25-s + (−0.477 + 0.878i)27-s + (0.172 + 0.298i)29-s + (−0.778 + 1.34i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.156 - 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.156 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.562568 + 0.480407i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.562568 + 0.480407i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.62 - 0.606i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + (2.62 + 4.54i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.33 - 2.31i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.90 - 3.30i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 3.52T + 17T^{2} \) |
| 19 | \( 1 - 4.67T + 19T^{2} \) |
| 23 | \( 1 + (2.47 - 4.29i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.928 - 1.60i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.33 - 7.51i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 2.67T + 37T^{2} \) |
| 41 | \( 1 + (-1.83 + 3.18i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.76 - 3.05i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.63 - 8.02i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 2.85T + 53T^{2} \) |
| 59 | \( 1 + (-2.10 + 3.63i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.98 - 6.89i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.429 - 0.744i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 15.1T + 71T^{2} \) |
| 73 | \( 1 - 6.28T + 73T^{2} \) |
| 79 | \( 1 + (-2.81 - 4.87i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.94 + 3.37i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 11T + 89T^{2} \) |
| 97 | \( 1 + (-1.91 - 3.32i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54088124367219032180106635577, −9.811924269773780190661843481669, −9.422555225906732314252550309069, −7.45185032219471056680901855173, −7.15896256975885583863930632287, −6.35689961955670522157387141741, −5.11888650745723188652215280235, −4.06354944247541279540910759735, −3.43748869845964402524403569668, −1.19876767267005210879708857616,
0.50219948432079023988840303533, 2.36611698168350663035456654687, 3.57786176758736355667604805600, 5.21256402981575272709082779579, 5.68262608406109503232872281133, 6.41697395840952463008876032048, 7.61115533342594053091684292560, 8.476892435523554835357294410172, 9.486741804083413297862776058404, 10.10358168609639259639121143978