L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)5-s + (0.707 − 0.707i)8-s − 1.00·10-s − 1.00·16-s − 1.41i·17-s + (1 + i)19-s + (0.707 + 0.707i)20-s + 1.41i·23-s − 1.00i·25-s − 2i·31-s + (0.707 + 0.707i)32-s + (−1.00 + 1.00i)34-s − 1.41i·38-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)5-s + (0.707 − 0.707i)8-s − 1.00·10-s − 1.00·16-s − 1.41i·17-s + (1 + i)19-s + (0.707 + 0.707i)20-s + 1.41i·23-s − 1.00i·25-s − 2i·31-s + (0.707 + 0.707i)32-s + (−1.00 + 1.00i)34-s − 1.41i·38-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.382+0.923i)Λ(1−s)
Λ(s)=(=(720s/2ΓC(s)L(s)(0.382+0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.382+0.923i
|
Analytic conductor: |
0.359326 |
Root analytic conductor: |
0.599438 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :0), 0.382+0.923i)
|
Particular Values
L(21) |
≈ |
0.7649421831 |
L(21) |
≈ |
0.7649421831 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1 |
| 5 | 1+(−0.707+0.707i)T |
good | 7 | 1−T2 |
| 11 | 1−iT2 |
| 13 | 1+iT2 |
| 17 | 1+1.41iT−T2 |
| 19 | 1+(−1−i)T+iT2 |
| 23 | 1−1.41iT−T2 |
| 29 | 1−iT2 |
| 31 | 1+2iT−T2 |
| 37 | 1−iT2 |
| 41 | 1−T2 |
| 43 | 1+iT2 |
| 47 | 1+1.41T+T2 |
| 53 | 1−iT2 |
| 59 | 1−iT2 |
| 61 | 1+(1−i)T−iT2 |
| 67 | 1−iT2 |
| 71 | 1+T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1+(1.41−1.41i)T−iT2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16082418165504980075734466990, −9.607022466584688324558734475436, −9.085113752990866780665547868187, −7.963615193229931851982675290965, −7.32067924072005349420657053653, −5.94177936700939655715355141630, −4.96641370577638982848358959965, −3.74322955803488103635970183538, −2.50138346045873189197283043621, −1.24946640468036301038987573849,
1.65089928933564993302833260922, 3.01702673398197661037316773425, 4.69447148435520395844182353373, 5.69949412272248130018087159535, 6.55672195386414276608856355551, 7.13931642202132727536844916255, 8.280599784901348970192876446868, 8.993184408357590596372335303342, 9.927025037500139583340724238653, 10.56172363104129373175838486318