L(s) = 1 | + (1 + i)2-s + 2i·4-s + (2 + i)5-s + (−3 + 3i)7-s + (−2 + 2i)8-s + (1 + 3i)10-s + (1 + i)11-s − 2i·13-s − 6·14-s − 4·16-s + (−1 + i)17-s + (−3 − 3i)19-s + (−2 + 4i)20-s + 2i·22-s + (1 + i)23-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + i·4-s + (0.894 + 0.447i)5-s + (−1.13 + 1.13i)7-s + (−0.707 + 0.707i)8-s + (0.316 + 0.948i)10-s + (0.301 + 0.301i)11-s − 0.554i·13-s − 1.60·14-s − 16-s + (−0.242 + 0.242i)17-s + (−0.688 − 0.688i)19-s + (−0.447 + 0.894i)20-s + 0.426i·22-s + (0.208 + 0.208i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.811 - 0.584i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.811 - 0.584i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.629753 + 1.95077i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.629753 + 1.95077i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2 - i)T \) |
good | 7 | \( 1 + (3 - 3i)T - 7iT^{2} \) |
| 11 | \( 1 + (-1 - i)T + 11iT^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 + (1 - i)T - 17iT^{2} \) |
| 19 | \( 1 + (3 + 3i)T + 19iT^{2} \) |
| 23 | \( 1 + (-1 - i)T + 23iT^{2} \) |
| 29 | \( 1 + (-7 + 7i)T - 29iT^{2} \) |
| 31 | \( 1 - 2iT - 31T^{2} \) |
| 37 | \( 1 - 6iT - 37T^{2} \) |
| 41 | \( 1 - 4iT - 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + (-7 - 7i)T + 47iT^{2} \) |
| 53 | \( 1 - 8T + 53T^{2} \) |
| 59 | \( 1 + (3 - 3i)T - 59iT^{2} \) |
| 61 | \( 1 + (1 + i)T + 61iT^{2} \) |
| 67 | \( 1 + 4iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (-3 + 3i)T - 73iT^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 - 2T + 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + (11 - 11i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73057355101041417394668619248, −9.683766580070126929823902463290, −9.050481160880803499857328237920, −8.124663599516232198582418581196, −6.80141375905686787510881406975, −6.31661779780174955120104631988, −5.64003006683396553648944949424, −4.53594051909741375411514032048, −3.08769866890418410376408389428, −2.45291577844336670654215150193,
0.841826057761572822179262196729, 2.24877343960286584302682143519, 3.54720363056628255249617564685, 4.34955945817994985974837715151, 5.48985654364290840828238081237, 6.44017374849058707932241328492, 6.99116277238255980010032444270, 8.769495901785871104081806800855, 9.394046380951027785864914227502, 10.41260568178774126558927420989