| L(s) = 1 | + (2 + i)5-s + (2.82 + 2.82i)7-s − 5.65i·11-s + (3 + 3i)13-s + (1 − i)17-s − 5.65·19-s + (−2.82 + 2.82i)23-s + (3 + 4i)25-s + 4i·29-s + (2.82 + 8.48i)35-s + (5 − 5i)37-s + (2.82 − 2.82i)43-s + (−2.82 − 2.82i)47-s + 9.00i·49-s + (−1 − i)53-s + ⋯ |
| L(s) = 1 | + (0.894 + 0.447i)5-s + (1.06 + 1.06i)7-s − 1.70i·11-s + (0.832 + 0.832i)13-s + (0.242 − 0.242i)17-s − 1.29·19-s + (−0.589 + 0.589i)23-s + (0.600 + 0.800i)25-s + 0.742i·29-s + (0.478 + 1.43i)35-s + (0.821 − 0.821i)37-s + (0.431 − 0.431i)43-s + (−0.412 − 0.412i)47-s + 1.28i·49-s + (−0.137 − 0.137i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.91378 + 0.543667i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.91378 + 0.543667i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2 - i)T \) |
| good | 7 | \( 1 + (-2.82 - 2.82i)T + 7iT^{2} \) |
| 11 | \( 1 + 5.65iT - 11T^{2} \) |
| 13 | \( 1 + (-3 - 3i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1 + i)T - 17iT^{2} \) |
| 19 | \( 1 + 5.65T + 19T^{2} \) |
| 23 | \( 1 + (2.82 - 2.82i)T - 23iT^{2} \) |
| 29 | \( 1 - 4iT - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + (-5 + 5i)T - 37iT^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + (-2.82 + 2.82i)T - 43iT^{2} \) |
| 47 | \( 1 + (2.82 + 2.82i)T + 47iT^{2} \) |
| 53 | \( 1 + (1 + i)T + 53iT^{2} \) |
| 59 | \( 1 - 11.3T + 59T^{2} \) |
| 61 | \( 1 - 4T + 61T^{2} \) |
| 67 | \( 1 + (2.82 + 2.82i)T + 67iT^{2} \) |
| 71 | \( 1 - 5.65iT - 71T^{2} \) |
| 73 | \( 1 + (3 + 3i)T + 73iT^{2} \) |
| 79 | \( 1 + 5.65T + 79T^{2} \) |
| 83 | \( 1 + (2.82 - 2.82i)T - 83iT^{2} \) |
| 89 | \( 1 - 8iT - 89T^{2} \) |
| 97 | \( 1 + (3 - 3i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76207403052580283443672966675, −9.474359041355659881832898766857, −8.695240151836359690834611604879, −8.225371976256451933934288823100, −6.77492387315936618083378343711, −5.87663439525393893898199069515, −5.41394752360444055875605633043, −3.94410361057665538280631075859, −2.63852224880232550203143512485, −1.59861957531367978836704335989,
1.25108832525556024564387860561, 2.27886909060435536651965762010, 4.17912950374236370212943521181, 4.68808491534124084129503227756, 5.86288057028163082038441799367, 6.81047690892648088793871774872, 7.88675247607973060769692218302, 8.448617636884204419795370340990, 9.711849828816361933576352486788, 10.29084235082692176748229223671