| L(s) = 1 | + (2 + i)5-s + (−2.82 − 2.82i)7-s + 5.65i·11-s + (3 + 3i)13-s + (1 − i)17-s + 5.65·19-s + (2.82 − 2.82i)23-s + (3 + 4i)25-s + 4i·29-s + (−2.82 − 8.48i)35-s + (5 − 5i)37-s + (−2.82 + 2.82i)43-s + (2.82 + 2.82i)47-s + 9.00i·49-s + (−1 − i)53-s + ⋯ |
| L(s) = 1 | + (0.894 + 0.447i)5-s + (−1.06 − 1.06i)7-s + 1.70i·11-s + (0.832 + 0.832i)13-s + (0.242 − 0.242i)17-s + 1.29·19-s + (0.589 − 0.589i)23-s + (0.600 + 0.800i)25-s + 0.742i·29-s + (−0.478 − 1.43i)35-s + (0.821 − 0.821i)37-s + (−0.431 + 0.431i)43-s + (0.412 + 0.412i)47-s + 1.28i·49-s + (−0.137 − 0.137i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.59630 + 0.453477i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.59630 + 0.453477i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2 - i)T \) |
| good | 7 | \( 1 + (2.82 + 2.82i)T + 7iT^{2} \) |
| 11 | \( 1 - 5.65iT - 11T^{2} \) |
| 13 | \( 1 + (-3 - 3i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1 + i)T - 17iT^{2} \) |
| 19 | \( 1 - 5.65T + 19T^{2} \) |
| 23 | \( 1 + (-2.82 + 2.82i)T - 23iT^{2} \) |
| 29 | \( 1 - 4iT - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + (-5 + 5i)T - 37iT^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + (2.82 - 2.82i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.82 - 2.82i)T + 47iT^{2} \) |
| 53 | \( 1 + (1 + i)T + 53iT^{2} \) |
| 59 | \( 1 + 11.3T + 59T^{2} \) |
| 61 | \( 1 - 4T + 61T^{2} \) |
| 67 | \( 1 + (-2.82 - 2.82i)T + 67iT^{2} \) |
| 71 | \( 1 + 5.65iT - 71T^{2} \) |
| 73 | \( 1 + (3 + 3i)T + 73iT^{2} \) |
| 79 | \( 1 - 5.65T + 79T^{2} \) |
| 83 | \( 1 + (-2.82 + 2.82i)T - 83iT^{2} \) |
| 89 | \( 1 - 8iT - 89T^{2} \) |
| 97 | \( 1 + (3 - 3i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35615005772923689835436809348, −9.592036776417482633037866824489, −9.234628922203217334537801231258, −7.54823101825916771162653478111, −6.93027329966505251899263308239, −6.30892968533645490676068413645, −5.03487519846613444273873738735, −3.94264101926466800700322737591, −2.83820755997016284325442560711, −1.41645507056146449885809412079,
1.01045886221699447086587951208, 2.78831392544147983224895355407, 3.45815656631332532523092023229, 5.33599772352351055866390974302, 5.81671477881983820569909819136, 6.43241023174306288182190377760, 7.982236558364575635046256432510, 8.773383566833503009474524125609, 9.395926561629184880399667063318, 10.17348961897263957801770430094