L(s) = 1 | + 5·5-s − 6·7-s + 32·11-s − 38·13-s − 26·17-s − 100·19-s − 78·23-s + 25·25-s + 50·29-s + 108·31-s − 30·35-s + 266·37-s − 22·41-s − 442·43-s − 514·47-s − 307·49-s − 2·53-s + 160·55-s + 500·59-s − 518·61-s − 190·65-s − 126·67-s + 412·71-s − 878·73-s − 192·77-s − 600·79-s + 282·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.323·7-s + 0.877·11-s − 0.810·13-s − 0.370·17-s − 1.20·19-s − 0.707·23-s + 1/5·25-s + 0.320·29-s + 0.625·31-s − 0.144·35-s + 1.18·37-s − 0.0838·41-s − 1.56·43-s − 1.59·47-s − 0.895·49-s − 0.00518·53-s + 0.392·55-s + 1.10·59-s − 1.08·61-s − 0.362·65-s − 0.229·67-s + 0.688·71-s − 1.40·73-s − 0.284·77-s − 0.854·79-s + 0.372·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - p T \) |
good | 7 | \( 1 + 6 T + p^{3} T^{2} \) |
| 11 | \( 1 - 32 T + p^{3} T^{2} \) |
| 13 | \( 1 + 38 T + p^{3} T^{2} \) |
| 17 | \( 1 + 26 T + p^{3} T^{2} \) |
| 19 | \( 1 + 100 T + p^{3} T^{2} \) |
| 23 | \( 1 + 78 T + p^{3} T^{2} \) |
| 29 | \( 1 - 50 T + p^{3} T^{2} \) |
| 31 | \( 1 - 108 T + p^{3} T^{2} \) |
| 37 | \( 1 - 266 T + p^{3} T^{2} \) |
| 41 | \( 1 + 22 T + p^{3} T^{2} \) |
| 43 | \( 1 + 442 T + p^{3} T^{2} \) |
| 47 | \( 1 + 514 T + p^{3} T^{2} \) |
| 53 | \( 1 + 2 T + p^{3} T^{2} \) |
| 59 | \( 1 - 500 T + p^{3} T^{2} \) |
| 61 | \( 1 + 518 T + p^{3} T^{2} \) |
| 67 | \( 1 + 126 T + p^{3} T^{2} \) |
| 71 | \( 1 - 412 T + p^{3} T^{2} \) |
| 73 | \( 1 + 878 T + p^{3} T^{2} \) |
| 79 | \( 1 + 600 T + p^{3} T^{2} \) |
| 83 | \( 1 - 282 T + p^{3} T^{2} \) |
| 89 | \( 1 - 150 T + p^{3} T^{2} \) |
| 97 | \( 1 - 386 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.700125703914960327548469542768, −8.788632635770644325053411477283, −7.928900760729304727783551766282, −6.66711280201578740803293966275, −6.27431653263672002410284253390, −4.96437391335913047294346096408, −4.06116841666061147546014838913, −2.76198394169540751676854251925, −1.63411637176480508555443978470, 0,
1.63411637176480508555443978470, 2.76198394169540751676854251925, 4.06116841666061147546014838913, 4.96437391335913047294346096408, 6.27431653263672002410284253390, 6.66711280201578740803293966275, 7.928900760729304727783551766282, 8.788632635770644325053411477283, 9.700125703914960327548469542768