Properties

Label 2-720-1.1-c3-0-2
Degree $2$
Conductor $720$
Sign $1$
Analytic cond. $42.4813$
Root an. cond. $6.51777$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s − 32·7-s + 36·11-s − 10·13-s + 78·17-s − 140·19-s − 192·23-s + 25·25-s − 6·29-s + 16·31-s + 160·35-s − 34·37-s + 390·41-s + 52·43-s + 408·47-s + 681·49-s + 114·53-s − 180·55-s + 516·59-s − 58·61-s + 50·65-s + 892·67-s − 120·71-s − 646·73-s − 1.15e3·77-s + 1.16e3·79-s − 732·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.72·7-s + 0.986·11-s − 0.213·13-s + 1.11·17-s − 1.69·19-s − 1.74·23-s + 1/5·25-s − 0.0384·29-s + 0.0926·31-s + 0.772·35-s − 0.151·37-s + 1.48·41-s + 0.184·43-s + 1.26·47-s + 1.98·49-s + 0.295·53-s − 0.441·55-s + 1.13·59-s − 0.121·61-s + 0.0954·65-s + 1.62·67-s − 0.200·71-s − 1.03·73-s − 1.70·77-s + 1.66·79-s − 0.968·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(720\)    =    \(2^{4} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(42.4813\)
Root analytic conductor: \(6.51777\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 720,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.135901801\)
\(L(\frac12)\) \(\approx\) \(1.135901801\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + p T \)
good7 \( 1 + 32 T + p^{3} T^{2} \)
11 \( 1 - 36 T + p^{3} T^{2} \)
13 \( 1 + 10 T + p^{3} T^{2} \)
17 \( 1 - 78 T + p^{3} T^{2} \)
19 \( 1 + 140 T + p^{3} T^{2} \)
23 \( 1 + 192 T + p^{3} T^{2} \)
29 \( 1 + 6 T + p^{3} T^{2} \)
31 \( 1 - 16 T + p^{3} T^{2} \)
37 \( 1 + 34 T + p^{3} T^{2} \)
41 \( 1 - 390 T + p^{3} T^{2} \)
43 \( 1 - 52 T + p^{3} T^{2} \)
47 \( 1 - 408 T + p^{3} T^{2} \)
53 \( 1 - 114 T + p^{3} T^{2} \)
59 \( 1 - 516 T + p^{3} T^{2} \)
61 \( 1 + 58 T + p^{3} T^{2} \)
67 \( 1 - 892 T + p^{3} T^{2} \)
71 \( 1 + 120 T + p^{3} T^{2} \)
73 \( 1 + 646 T + p^{3} T^{2} \)
79 \( 1 - 1168 T + p^{3} T^{2} \)
83 \( 1 + 732 T + p^{3} T^{2} \)
89 \( 1 - 1590 T + p^{3} T^{2} \)
97 \( 1 - 2 p T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.948943151524774269076606562536, −9.277064500079016034987917324073, −8.347613759734358918530732483072, −7.30205102656031344667386087787, −6.41117117781216744707866810815, −5.83717832399257337782806826057, −4.16243700642419100532598394699, −3.61923333518334604060585225870, −2.34996550677371331764509638286, −0.58865887783941126036912053374, 0.58865887783941126036912053374, 2.34996550677371331764509638286, 3.61923333518334604060585225870, 4.16243700642419100532598394699, 5.83717832399257337782806826057, 6.41117117781216744707866810815, 7.30205102656031344667386087787, 8.347613759734358918530732483072, 9.277064500079016034987917324073, 9.948943151524774269076606562536

Graph of the $Z$-function along the critical line